| 研究生: |
洪峻揚 Hung, Jun-Yang |
|---|---|
| 論文名稱: |
太陽能模組及其安裝系統之研究開發 Design and Analysis of Solar Module and Mounting System |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 薄膜太陽能模組 、有限元素分析 、機構設計 、玻璃最大主應力 、安裝工法 |
| 外文關鍵詞: | thin film solar modules, finite element analysis, mechanism design, maximum principal stresses of glass, mounting method |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
太陽能光電技術中,最重要的發展目標之一為達到Grid Parity(太陽能發電成本與現有電力持平),使再生能源能真正被實現至普及應用。而薄膜太陽能光電模組因使用的矽原料遠少於晶矽型太陽能光電模組,且使用玻璃為基板,上游材料供應練較為精簡,為目前最具有希望達成Grid Parity的選擇之一。現今薄膜太陽能技術發展的重要關鍵為通過IEC 61646的測試實驗,並取得TUV與UL國際認證。
薄膜太陽能模組及其框架的機構設計,為提昇整體機械結構強度中相當重要的一環。並且實用上的易於安裝與維護、減輕模組重量、降低成本,皆是機構研發設計必須的考量項目。故透過有限元素分析進行模組、支架以及夾具的結構計算,同時考慮脆性玻璃基板以及緩衝材料的受力變形行為,有效地去預測模組在機械負載施加下的承受能力。之後並結合實驗來驗證模擬的可行性,以建立準確的模擬樣本,同時進行實驗樣本的試產與嚴苛測試,來達到具有實際量產實力與通過國際認證的太陽能模組結構。
在有限元素分析方面,模擬與實驗樣本的相對誤差介於±10%的範圍之內,並透過模組變形行為的解析,找出玻璃最大主應力與框架截面幾何的對應關係,設計開發框架系統的優化流程圖,再藉著調整框架系統的相對安裝位置來降低玻璃最大主應力,迅速的進行設計變更、改善傳統的安裝工法,開發出結構強度最佳、施工最為便利與成本最低的模組框架及其安裝系統之機構設計。
關鍵詞:薄膜太陽能模組、有限元素分析、機構設計、玻璃最大主應力、安裝工法
ABSTRACT
The most important aim of solar cell technology is to reach Grid Parity (the cost of photovoltaic electricity is equal to or lower than grid power), so that the renewable energy could be really realized and popularization application. The amount of silicon for fabricating thin film solar cells is less than crystalline silicon solar cells, and thin film solar cells use glass as substrate so that the upstream supply chain can be simpler. At present, thin film solar cells is one of the most promising choices for reaching Grid Parity. Today, the important challenges for developing thin film solar cell technology development are passed through the IEC 61646 test and obtain international certification of TUV and UL.
The mechanism design of thin film photovoltaic modules and frame is important in enhancement of the overall strength of mechanical structure. Simpler installation and maintenance of solar cell modules, weight loss and cost down are also important issues for mechanical frame design. Through finite element analysis, we can realize that the deformation behaviors of glass as substrate and buffer materials under loading, in order to predict the ability to withstand mechanical loading, and experiments will be executed to verify the simulation results. At the same time, the samples will be produced and tested, in order to achieve the aim of actual production solar modules system with international certification.
In finite element analysis, the relative deviation of simulation and experiment are within the ±10% range. Through the analysis of modules deformation, find out the corresponding relationship between the maximum principal stresses of glass and the frame cross-section geometries, design the development flow-chart, adjust the mounting positions of frame system, in order to reduce the maximum principal stresses of glass, proceed design changes quickly and improving traditional mounting methods will create the best mechanism design.
Keywords: thin film solar modules, finite element analysis, mechanism design, maximum principal stresses of glass, mounting method
參考文獻
[1] EPV SOLAR Inc., “Thin-film PV Module Attachment System Description and Installation Guide for The C-Channel Back Bracket”.
[2] EPV SOLAR Inc., “Thin-film PV Module Attachment System Description and Installation Guide-EPV SOLAR Slide-Channel (SC) Back Bracket”.
[3] Robert Stancel, “Rapid Mounting System for Modules”, United States Patent Application Publication, US2009/0114270 A1 (2009).
[4] SOLON Inc., “SOLON Black 130/04 Assembly and Installation Instructions”.
[5] UNIRAC, Inc., “U-LA Large PV Array Mounting System-Ground with Aluminum Connectors for 2-Inch Schedule 40 Steel Pipe Installation Manual 304”.
[6] NexPower Inc., “Introduction of GG Module Mounting Methods” (2009).
[7] Michael Strizki, “Modular Solar Panel Mounting Clamp”, United States Patent Application Publication, US2009/0250580 A1 (2009).
[8] Markus Munch, Michael Janker, “Panel Form Photovoltaic Frameless Solar Module”, United States Patent Application Publication, US2009/0283136 A1 (2009).
[9] William F. Riley, Leroy D. Sturges, Don H. Morris, Mechanics of Materials. 6th edition, John Wiley & Sons (2006).
[10] Martin H. Sadd, Elasticity. 2nd edition, Elsevier Inc. (2009).
[11] Anonymous, “Introduction to Contact”, Workbench – Mechanical Structural Nonlinearities, ANSYS Inc. (2009).
[12] Anonymous, “Advanced Contact” , Workbench – Mechanical Structural Nonlinearities, ANSYS Inc. (2009).
[13] Huei-Huang Lee, Finite Element Simulation with ANSYS Workbench 12, Schroff Development Corporation (2010).
[14] 李輝煌, ANSYS 工程分析:基礎與觀念, 萬利圖書 (2005).
[15] 劉晉奇、褚晴暉, 有限元素分析與ANSYS的工程應用, 滄海書局(2006).
校內:2020-12-30公開