簡易檢索 / 詳目顯示

研究生: 蔡竣宇
Tsai, Chun-Yu
論文名稱: 3-UPU並聯式機器人之撓性分析
Compliance Analysis of 3-UPU Parallel Robots
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 139
中文關鍵詞: 平移並聯式機構機構撓性模型並聯式工具機3-UPU
外文關鍵詞: Parallel robot, translational parallel manipulator, compliance and stiffness matrices, bearing compliance, center of elasticity
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工廠自動化夾取越來越熱門下,機械手臂或機器人成為自動化趨勢下的必要工廠配置,其中具備高移動速度與高精度的並聯式機構是目前各家廠商研究對象,有鑑於市售並聯式機器人多採用球接頭導致機構撓性較高,容易因負載變形進而影響位置精度,因此本文發展3-UPU平移並聯式機器人,將應用於夾取高質量物品,並在以低撓性為主要設計目標下,針對機器人的接頭撓性設計及軸承的選用,制定相關標準化流程。另外本文也針對3-UPU並聯式機器人開發撓性評估方法,此撓性評估法不僅使設計者能快速得到機構撓性,有利於機構達到設定之撓性目標,亦可計算機構不同撓體組件之撓性貢獻度,提供設計者強化之對象與設計方向。由於並聯式機構之端接器由多個運動鏈所控制,造成影響端接器的負載位移因素眾多且極其複雜,其中桿件與接頭撓性為兩個主要因子,不像串聯式手臂可使用大尺寸的接頭降低機構撓性,並聯式機構有接頭干涉問題,無法有效強化接頭撓性,表示接頭撓性影響甚巨,所以本文將3-UPU機器人之撓性模型,簡化等效為四種接頭串聯的撓性系統,並且以商業軟體驗證該撓性模型正確性。
    除了探討並聯式機器人的撓性外,本文也針對並聯式工具機進行研究,希望設計一台低撓性之3-UPU並聯式工具機,以應用於車銑複合五軸加工,並研究工具機之靜態撓性 ,以撓性模型預測工具機於工作空間內各方向撓性,進行接頭的設計改善與加強,同時評估目前選用的接頭軸承,配合商用軟體模擬端接器的撓性,進而制定工具機的目標撓性,再依據撓性目標選用適合之軸承,最後歸納降低工具機撓性之方式。

    Sufficiently low compliance is required for robot end-effectors to perform various tasks with high static and dynamic accuracy. The joint compliance and link compliance of robots are the two major factors for the determination of overall end-effector compliance. Unlike serial robots that can allow larger joint sizes to improve the joint compliance, the joints of parallel robots are usually closely located and hence the joint size cannot be easily increased. Compared with the link compliance, the joint compliance of a parallel robot contributes more to the end-effector compliance, but its importance is often overlooked. To reduce the computational intensity of robot compliance design, analytical joint compliance models are proposed for the class of 3-UPU parallel robots. These joint compliance models can be used to quickly evaluate the compliance contribution of each revolute joint at various parallel robot configurations. Numerical and experimental verifications are provided to demonstrate these models. We expect that the design of 3- UPU parallel robot compliance can be facilitated by using the proposed joint compliance models.

    摘要 II Abstract III 致謝 VII 目錄 IX 表目錄 XIII 圖目錄 XV 符號說明 XX 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 4 1.3 動機與目標 9 1.4 論文架構 11 第二章 並聯式機構之撓性分析設計 12 2.1 前言 12 2.2 撓性分析構型選擇之考量 12 2.3 3-UPU並聯式機構介紹 14 2.3.1 3-UPU構型幾何限制與特性 14 2.3.2 3-UPU機構參數與運動學推導 16 2.3.3 3-UPU原型機之參數與工作空間設定 19 2.4 3-UPU原型機之接頭設計與軸承剛性實驗 21 2.4.1 3-UPU原型機之旋轉接頭設計 22 2.4.2 軸承剛性量測實驗與預載 23 2.4.3 軸承剛性模擬校正與流程統整 31 2.5 3-UPU原型機之整體設計與撓性模擬分析 34 2.5.1 3-UPU原型機之整體設計 34 2.5.2 3-UPU原型機之撓性模擬 39 2.5.3 3-UPU原型機之彈性中心計算 48 2.6 3-UPU原型機實體撓性量測 52 2.6.1 3-UPU原型機之撓性量測配置 53 2.6.2 3-UPU原型機之撓性量測結果與討論 54 2.7 本章小結 58 第三章 建立並聯式機構撓性分析模型 60 3.1 前言 60 3.2 3-UPU原型機之接頭位移模型 60 3.2.1 3-UPU原型機之接頭位移模型基本架構 61 3.2.2 3-UPU原型機之接頭位移模型推導 67 3.2.3 Ai1接頭位移模型 69 3.2.4 Ai2接頭位移模型 72 3.2.5 Bi2接頭位移模型 77 3.2.6 Bi1接頭位移模型 82 3.2.7 四種接頭位移模型總整理 85 3.3 3-UPU原型機之接頭撓性模型 85 3.3.1 3-UPU原型機之簡化接頭撓假設 86 3.3.2 3-UPU原型機之撓性模型建立 87 3.3.3 3-UPU原型機之撓性模型驗證 94 3.4 以撓性模型進行原型機之設計變更 97 3.4.1 3-UPU原型機工作空間內之撓性分佈與彈性中心 97 3.4.2 3-UPU原型機之參數R對整體撓性模擬 100 3.4.3 3-UPU原型機之參數γ對整體撓性模擬 102 3.5 本章小結 107 第四章 並聯式工具機之撓性分析設計 109 4.1 前言 109 4.2 3-UPU並聯式工具機介紹 109 4.3 3-UPU工具機之靜力分析與誤差影響 111 4.3.1 3-UPU工具機之誤差靈敏度分析 111 4.3.2 3-UPU工具機之被動接頭受力計算 115 4.4 3-UPU工具機之撓性分析與軸承選用 121 4.4.1 3-UPU工具機之撓性貢獻度分析 121 4.4.2 3-UPU工具機工作空間內之撓性分佈與彈性中心 124 4.4.3 以工具機撓性目標計算合適的接頭剛性 127 4.5 本章小結 130 第五章 結論與可延伸之未來研究 131 5.1 結論 131 5.2 可延伸之未來研究 133 參考文獻 134

    [1] Merlet, J. P. (2006). Parallel robots (Vol. 128). Springer Science & Business Media.
    [2] Pandilov, Z., & Dukovski, V. (2014). COMPARISON OF THE CHARACTERISTICS BETWEEN SERIAL AND PARALLEL ROBOTS. Acta Technica Corvininesis-Bulletin of Engineering, 7(1).
    [3] Clavel, R. (1988). A fast robot with parallel geometry. In Proc. Int. Symposium on Industrial Robots (pp. 91-100).
    [4] Lee, C. C., & Chou, J. H. (2004, January). Kinematics of a 3-dof translational parallel mechanism with 3-PRPaR topology. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46954, pp. 561-570).
    [5] Li, Y., & Xu, Q. (2008). Stiffness analysis for a 3-PUU parallel kinematic machine. Mechanism and machine theory, 43(2), 186-200.
    [6] Wang, L., Xu, H., & Guan, L. (2017). Optimal design of a 3-PUU parallel mechanism with 2R1T DOFs. Mechanism and Machine Theory, 114, 190-203.
    [7] Chebbi, A. H., & Parenti-Castelli, V. (2010, January). Potential of the 3-UPU Translational Parallel Manipulator. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 44106, pp. 1089-1099).
    [8] Li, Y., & Xu, Q. (2006). Kinematic analysis and design of a new 3-DOF translational parallel manipulator.
    [9] Omron Corp. "Hornet" https://industrial.omron.eu/en/products/hornet [Accessed: August 31, 2020]
    [10] ABB Corp. "IRB 360 FlexPicker" https://new.abb.com/products/robotics/industrial-robots/irb-360 [Accessed: August 31, 2020]
    [11] D-FORCE Corp. "V4" https://www.d-force.com.tw/d-force-v3 [Accessed: August 31, 2020]
    [12] Dindorf, R., & Wos, P. (2019, February). Design of a hydraulically actuated 3-DoF translational parallel manipulator. In AIP Conference Proceedings (Vol. 2077, No. 1, p. 020015). AIP Publishing LLC.
    [13] Han, C., Kim, J., Kim, J., & Park, F. C. (2002). Kinematic sensitivity analysis of the 3-UPU parallel mechanism. Mechanism and Machine Theory, 37(8), 787-798.
    [14] Zhao, C., Chen, Z., Li, Y., & Huang, Z. (2020). Motion Characteristics Analysis of a Novel 2R1T 3-UPU Parallel Mechanism. Journal of Mechanical Design, 142(1).
    [15] All3DP "What is a Delta 3D Printer?" https://all3d p.com/2/what-is-a-delta-3d-printer-simply-explained/ [Accessed: August 21, 2021]
    [16] Hamida, I. B., Laribi, M. A., Mlika, A., Romdhane, L., & Zeghloul, S. (2021). Dimensional synthesis and performance evaluation of four translational parallel manipulators. Robotica, 39(2), 233-249.
    [17] Klimchik, A., Pashkevich, A., & Chablat, D. (2013). CAD-based approach for identification of elasto-static parameters of robotic manipulators. Finite Elements in Analysis and Design, 75, 19-30.
    [18] Long, C. S., Snyman, J. A., & Groenwold, A. A. (2003). Optimal structural design of a planar parallel platform for machining. Applied Mathematical Modelling, 27(8), 581-609.
    [19] Rizk, R., Fauroux, J. C., Mumteanu, M., & Gogu, G. (2006). A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility. Journal of machine engineering, 6(2), 45-55.
    [20] Sung Kim, H., & Lipkin, H. (2014). Stiffness of parallel manipulators with serially connected legs. Journal of Mechanisms and Robotics, 6(3), 031001.
    [21] Taghvaeipour, A., Angeles, J., & Lessard, L. (2012). On the elastostatic analysis of mechanical systems. Mechanism and Machine Theory, 58, 202-216.
    [22] Sun, T., Lian, B., & Song, Y. (2016). Stiffness analysis of a 2-DoF over-constrained RPM with an articulated traveling platform. Mechanism and Machine Theory, 96, 165-178.
    [23] Harris, T. A. (2001). Rolling bearing analysis. John Wiley and sons.
    [24] Lim, T. C., & Singh, R. (1990). Vibration transmission through rolling element bearings, part I: bearing stiffness formulation. Journal of sound and vibration, 139(2), 179-199.
    [25] Görgülü, İ., Carbone, G., & Dede, M. İ. C. (2020). Time efficient stiffness model computation for a parallel haptic mechanism via the virtual joint method. Mechanism and Machine Theory, 143, 103614.
    [26] Huang, C., Hung, W. H., & Kao, I. (2002, May). New conservative stiffness mapping for the Stewart-Gough platform. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 1, pp. 823-828). IEEE.
    [27] Cammarata, A. (2016). Unified formulation for the stiffness analysis of spatial mechanisms. Mechanism and Machine Theory, 105, 272-284.
    [28] Alessandro, C., & Rosario, S. (2014). Elastodynamic optimization of a 3T1R parallel manipulator. Mechanism and Machine Theory, 73, 184-196.
    [29] Zeng, Qiang, Kornel F. Ehmann, and Jian Cao. "Tri-pyramid Robot: Design and kinematic analysis of a 3-DOF translational parallel manipulator." Robotics and Computer-Integrated Manufacturing 30.6 (2014): 648-657.
    [30] Wang, Z., Wang, G., Ji, S., Wan, Y., & Yuan, Q. (2007, December). Optimal design of a linear delta robot for the prescribed cuboid dexterous workspace. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2183-2188). IEEE.
    [31] Yu, G., Wang, L., Wu, J., Wang, D., & Hu, C. (2018). Stiffness modeling approach for a 3-DOF parallel manipulator with consideration of nonlinear joint stiffness. Mechanism and Machine Theory, 123, 137-152.
    [32] Lian, B., Sun, T., Song, Y., Jin, Y., & Price, M. (2015). Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects. International Journal of Machine Tools and Manufacture, 95, 82-96.
    [33] Semjon, J., Janos, R., Sukop, M., Tuleja, P., Hajduk, M., Jurus, O., ... & Vagas, M. (2020). Verification of the UR5 robot’s properties after a crash caused by a fall of a transferred load from a crane. International Journal of Advanced Robotic Systems, 17(1), 1729881420904209.
    [34] Zeng, Q., Ehmann, K. F., & Cao, J. (2014). Tri-pyramid Robot: Design and kinematic analysis of a 3-DOF translational parallel manipulator. Robotics and Computer-Integrated Manufacturing, 30(6), 648-657.
    [35] Carricato, M., & Parenti-Castelli, V. (2003). A family of 3-DOF translational parallel manipulators. J. Mech. Des., 125(2), 302-307.
    [36] Kong, X., & Gosselin, C. M. (2002). Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. The International Journal of Robotics Research, 21(9), 791-798.
    [37] Carricato, M., & Parenti-Castelli, V. (2003). A family of 3-DOF translational parallel manipulators. J. Mech. Des., 125(2), 302-307.
    [38] Baran, E. A., Ozen, O., Bilgili, D., & Sabanovic, A. (2019). Unified kinematics of prismatically actuated parallel delta robots. Robotica, 37(9), 1513-1532.
    [39] Merlet, J. P. (2006). Parallel robots (Vol. 128). Springer Science & Business Media.
    [40] 向志軒(2021)。「具變化連桿長度3-UPU型並聯式機構之平衡設計與最佳化」,清華大學動力機械工程學系碩士學位論文。
    [41] 三住公司,"軸承組配方式" https://tw.misumiec.com/vona2/detail/221000058233-/?HissuCode=7202BWDB [Accessed: October 4, 2021]
    [42] NSK,"軸承鎖固螺絲方式" https://hardhatengineer.com/flange-bolt-torque-sequence-table/ [Accessed: October 4, 2021]
    [43] 卓孟寬(2020)。「平移式並聯工具機之運動與動力分析」,成功大學機械工程學系碩士學位論文。
    [44] SMQ,"軸承鎖固螺絲方式"http://www.samq.com.tw/itemlist/tag/625.html [Accessed: October 4, 2021]
    [45] MISUMI Corp. " MISUMI-螺桿選定方法" https://tw.misumiec.com/maker/misumi /mech/product/ls/choice/ [Accessed: October 4, 2021]
    [46] MISUMI Corp. " MISUMI-皮帶輪型錄"https://tw.c.misumiec.com/book/tw-_2015_msm_fa_01/digitalcatalog.html?page_num=1-1431-2015 [Accessed: October 4, 2021]
    [47] Kövecses, J., & Angeles, J. (2007). The stiffness matrix in elastically articulated rigid-body systems. Multibody System Dynamics, 18(2), 169-184.
    [48] ENDEAVOS, " ANSYS螺絲邊界條件設定" https://www.endeavos.com/bolted-connections-ansys-workbench-part-1/ [Accessed: October 4, 2021]
    [49] Caro, S., Wenger, P., Bennis, F., & Chablat, D. (2006). Sensitivity analysis of the orthoglide: A three-dof translational parallel kinematic machine.
    [50] SKF, "軸承32010X型錄" https://www.skf.com/group/products/rollingbearings/-roller-bearings/tapered-roller-bearings/single-row-tapered-roller-bearings/productid-32010%20X/ [Accessed: October 4, 2021]
    [51] PMC精密機械研究發展中心, "工具機性能評價" https://docsplayer.com/150913582%E5%B7%A5%E5%85%B7%E6%A9%9F%E6%80%A7%E8%83%BD%E8%A9%95%E5%83%B9.html/ [Accessed: October 4, 2021]

    無法下載圖示 校內:2026-11-15公開
    校外:2026-11-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE