| 研究生: |
蔡竣宇 Tsai, Chun-Yu |
|---|---|
| 論文名稱: |
3-UPU並聯式機器人之撓性分析 Compliance Analysis of 3-UPU Parallel Robots |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 平移並聯式機構 、機構撓性模型 、並聯式工具機 、3-UPU |
| 外文關鍵詞: | Parallel robot, translational parallel manipulator, compliance and stiffness matrices, bearing compliance, center of elasticity |
| 相關次數: | 點閱:137 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工廠自動化夾取越來越熱門下,機械手臂或機器人成為自動化趨勢下的必要工廠配置,其中具備高移動速度與高精度的並聯式機構是目前各家廠商研究對象,有鑑於市售並聯式機器人多採用球接頭導致機構撓性較高,容易因負載變形進而影響位置精度,因此本文發展3-UPU平移並聯式機器人,將應用於夾取高質量物品,並在以低撓性為主要設計目標下,針對機器人的接頭撓性設計及軸承的選用,制定相關標準化流程。另外本文也針對3-UPU並聯式機器人開發撓性評估方法,此撓性評估法不僅使設計者能快速得到機構撓性,有利於機構達到設定之撓性目標,亦可計算機構不同撓體組件之撓性貢獻度,提供設計者強化之對象與設計方向。由於並聯式機構之端接器由多個運動鏈所控制,造成影響端接器的負載位移因素眾多且極其複雜,其中桿件與接頭撓性為兩個主要因子,不像串聯式手臂可使用大尺寸的接頭降低機構撓性,並聯式機構有接頭干涉問題,無法有效強化接頭撓性,表示接頭撓性影響甚巨,所以本文將3-UPU機器人之撓性模型,簡化等效為四種接頭串聯的撓性系統,並且以商業軟體驗證該撓性模型正確性。
除了探討並聯式機器人的撓性外,本文也針對並聯式工具機進行研究,希望設計一台低撓性之3-UPU並聯式工具機,以應用於車銑複合五軸加工,並研究工具機之靜態撓性 ,以撓性模型預測工具機於工作空間內各方向撓性,進行接頭的設計改善與加強,同時評估目前選用的接頭軸承,配合商用軟體模擬端接器的撓性,進而制定工具機的目標撓性,再依據撓性目標選用適合之軸承,最後歸納降低工具機撓性之方式。
Sufficiently low compliance is required for robot end-effectors to perform various tasks with high static and dynamic accuracy. The joint compliance and link compliance of robots are the two major factors for the determination of overall end-effector compliance. Unlike serial robots that can allow larger joint sizes to improve the joint compliance, the joints of parallel robots are usually closely located and hence the joint size cannot be easily increased. Compared with the link compliance, the joint compliance of a parallel robot contributes more to the end-effector compliance, but its importance is often overlooked. To reduce the computational intensity of robot compliance design, analytical joint compliance models are proposed for the class of 3-UPU parallel robots. These joint compliance models can be used to quickly evaluate the compliance contribution of each revolute joint at various parallel robot configurations. Numerical and experimental verifications are provided to demonstrate these models. We expect that the design of 3- UPU parallel robot compliance can be facilitated by using the proposed joint compliance models.
[1] Merlet, J. P. (2006). Parallel robots (Vol. 128). Springer Science & Business Media.
[2] Pandilov, Z., & Dukovski, V. (2014). COMPARISON OF THE CHARACTERISTICS BETWEEN SERIAL AND PARALLEL ROBOTS. Acta Technica Corvininesis-Bulletin of Engineering, 7(1).
[3] Clavel, R. (1988). A fast robot with parallel geometry. In Proc. Int. Symposium on Industrial Robots (pp. 91-100).
[4] Lee, C. C., & Chou, J. H. (2004, January). Kinematics of a 3-dof translational parallel mechanism with 3-PRPaR topology. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46954, pp. 561-570).
[5] Li, Y., & Xu, Q. (2008). Stiffness analysis for a 3-PUU parallel kinematic machine. Mechanism and machine theory, 43(2), 186-200.
[6] Wang, L., Xu, H., & Guan, L. (2017). Optimal design of a 3-PUU parallel mechanism with 2R1T DOFs. Mechanism and Machine Theory, 114, 190-203.
[7] Chebbi, A. H., & Parenti-Castelli, V. (2010, January). Potential of the 3-UPU Translational Parallel Manipulator. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 44106, pp. 1089-1099).
[8] Li, Y., & Xu, Q. (2006). Kinematic analysis and design of a new 3-DOF translational parallel manipulator.
[9] Omron Corp. "Hornet" https://industrial.omron.eu/en/products/hornet [Accessed: August 31, 2020]
[10] ABB Corp. "IRB 360 FlexPicker" https://new.abb.com/products/robotics/industrial-robots/irb-360 [Accessed: August 31, 2020]
[11] D-FORCE Corp. "V4" https://www.d-force.com.tw/d-force-v3 [Accessed: August 31, 2020]
[12] Dindorf, R., & Wos, P. (2019, February). Design of a hydraulically actuated 3-DoF translational parallel manipulator. In AIP Conference Proceedings (Vol. 2077, No. 1, p. 020015). AIP Publishing LLC.
[13] Han, C., Kim, J., Kim, J., & Park, F. C. (2002). Kinematic sensitivity analysis of the 3-UPU parallel mechanism. Mechanism and Machine Theory, 37(8), 787-798.
[14] Zhao, C., Chen, Z., Li, Y., & Huang, Z. (2020). Motion Characteristics Analysis of a Novel 2R1T 3-UPU Parallel Mechanism. Journal of Mechanical Design, 142(1).
[15] All3DP "What is a Delta 3D Printer?" https://all3d p.com/2/what-is-a-delta-3d-printer-simply-explained/ [Accessed: August 21, 2021]
[16] Hamida, I. B., Laribi, M. A., Mlika, A., Romdhane, L., & Zeghloul, S. (2021). Dimensional synthesis and performance evaluation of four translational parallel manipulators. Robotica, 39(2), 233-249.
[17] Klimchik, A., Pashkevich, A., & Chablat, D. (2013). CAD-based approach for identification of elasto-static parameters of robotic manipulators. Finite Elements in Analysis and Design, 75, 19-30.
[18] Long, C. S., Snyman, J. A., & Groenwold, A. A. (2003). Optimal structural design of a planar parallel platform for machining. Applied Mathematical Modelling, 27(8), 581-609.
[19] Rizk, R., Fauroux, J. C., Mumteanu, M., & Gogu, G. (2006). A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility. Journal of machine engineering, 6(2), 45-55.
[20] Sung Kim, H., & Lipkin, H. (2014). Stiffness of parallel manipulators with serially connected legs. Journal of Mechanisms and Robotics, 6(3), 031001.
[21] Taghvaeipour, A., Angeles, J., & Lessard, L. (2012). On the elastostatic analysis of mechanical systems. Mechanism and Machine Theory, 58, 202-216.
[22] Sun, T., Lian, B., & Song, Y. (2016). Stiffness analysis of a 2-DoF over-constrained RPM with an articulated traveling platform. Mechanism and Machine Theory, 96, 165-178.
[23] Harris, T. A. (2001). Rolling bearing analysis. John Wiley and sons.
[24] Lim, T. C., & Singh, R. (1990). Vibration transmission through rolling element bearings, part I: bearing stiffness formulation. Journal of sound and vibration, 139(2), 179-199.
[25] Görgülü, İ., Carbone, G., & Dede, M. İ. C. (2020). Time efficient stiffness model computation for a parallel haptic mechanism via the virtual joint method. Mechanism and Machine Theory, 143, 103614.
[26] Huang, C., Hung, W. H., & Kao, I. (2002, May). New conservative stiffness mapping for the Stewart-Gough platform. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 1, pp. 823-828). IEEE.
[27] Cammarata, A. (2016). Unified formulation for the stiffness analysis of spatial mechanisms. Mechanism and Machine Theory, 105, 272-284.
[28] Alessandro, C., & Rosario, S. (2014). Elastodynamic optimization of a 3T1R parallel manipulator. Mechanism and Machine Theory, 73, 184-196.
[29] Zeng, Qiang, Kornel F. Ehmann, and Jian Cao. "Tri-pyramid Robot: Design and kinematic analysis of a 3-DOF translational parallel manipulator." Robotics and Computer-Integrated Manufacturing 30.6 (2014): 648-657.
[30] Wang, Z., Wang, G., Ji, S., Wan, Y., & Yuan, Q. (2007, December). Optimal design of a linear delta robot for the prescribed cuboid dexterous workspace. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2183-2188). IEEE.
[31] Yu, G., Wang, L., Wu, J., Wang, D., & Hu, C. (2018). Stiffness modeling approach for a 3-DOF parallel manipulator with consideration of nonlinear joint stiffness. Mechanism and Machine Theory, 123, 137-152.
[32] Lian, B., Sun, T., Song, Y., Jin, Y., & Price, M. (2015). Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects. International Journal of Machine Tools and Manufacture, 95, 82-96.
[33] Semjon, J., Janos, R., Sukop, M., Tuleja, P., Hajduk, M., Jurus, O., ... & Vagas, M. (2020). Verification of the UR5 robot’s properties after a crash caused by a fall of a transferred load from a crane. International Journal of Advanced Robotic Systems, 17(1), 1729881420904209.
[34] Zeng, Q., Ehmann, K. F., & Cao, J. (2014). Tri-pyramid Robot: Design and kinematic analysis of a 3-DOF translational parallel manipulator. Robotics and Computer-Integrated Manufacturing, 30(6), 648-657.
[35] Carricato, M., & Parenti-Castelli, V. (2003). A family of 3-DOF translational parallel manipulators. J. Mech. Des., 125(2), 302-307.
[36] Kong, X., & Gosselin, C. M. (2002). Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. The International Journal of Robotics Research, 21(9), 791-798.
[37] Carricato, M., & Parenti-Castelli, V. (2003). A family of 3-DOF translational parallel manipulators. J. Mech. Des., 125(2), 302-307.
[38] Baran, E. A., Ozen, O., Bilgili, D., & Sabanovic, A. (2019). Unified kinematics of prismatically actuated parallel delta robots. Robotica, 37(9), 1513-1532.
[39] Merlet, J. P. (2006). Parallel robots (Vol. 128). Springer Science & Business Media.
[40] 向志軒(2021)。「具變化連桿長度3-UPU型並聯式機構之平衡設計與最佳化」,清華大學動力機械工程學系碩士學位論文。
[41] 三住公司,"軸承組配方式" https://tw.misumiec.com/vona2/detail/221000058233-/?HissuCode=7202BWDB [Accessed: October 4, 2021]
[42] NSK,"軸承鎖固螺絲方式" https://hardhatengineer.com/flange-bolt-torque-sequence-table/ [Accessed: October 4, 2021]
[43] 卓孟寬(2020)。「平移式並聯工具機之運動與動力分析」,成功大學機械工程學系碩士學位論文。
[44] SMQ,"軸承鎖固螺絲方式"http://www.samq.com.tw/itemlist/tag/625.html [Accessed: October 4, 2021]
[45] MISUMI Corp. " MISUMI-螺桿選定方法" https://tw.misumiec.com/maker/misumi /mech/product/ls/choice/ [Accessed: October 4, 2021]
[46] MISUMI Corp. " MISUMI-皮帶輪型錄"https://tw.c.misumiec.com/book/tw-_2015_msm_fa_01/digitalcatalog.html?page_num=1-1431-2015 [Accessed: October 4, 2021]
[47] Kövecses, J., & Angeles, J. (2007). The stiffness matrix in elastically articulated rigid-body systems. Multibody System Dynamics, 18(2), 169-184.
[48] ENDEAVOS, " ANSYS螺絲邊界條件設定" https://www.endeavos.com/bolted-connections-ansys-workbench-part-1/ [Accessed: October 4, 2021]
[49] Caro, S., Wenger, P., Bennis, F., & Chablat, D. (2006). Sensitivity analysis of the orthoglide: A three-dof translational parallel kinematic machine.
[50] SKF, "軸承32010X型錄" https://www.skf.com/group/products/rollingbearings/-roller-bearings/tapered-roller-bearings/single-row-tapered-roller-bearings/productid-32010%20X/ [Accessed: October 4, 2021]
[51] PMC精密機械研究發展中心, "工具機性能評價" https://docsplayer.com/150913582%E5%B7%A5%E5%85%B7%E6%A9%9F%E6%80%A7%E8%83%BD%E8%A9%95%E5%83%B9.html/ [Accessed: October 4, 2021]
校內:2026-11-15公開