| 研究生: |
賴昱成 Lai, Yu-Cheng |
|---|---|
| 論文名稱: |
微藻功能性蛋白生產製程優化、鑑定與應用技術 Optimization, identification and application techniques of functional proteins production from microalgae |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 微藻蛋白 、小球藻 、光合自營培養 、抗菌活性 、抗氧化性 、益生元性能 |
| 外文關鍵詞: | Microalgal proteins, Chlorella, Photo-autotrophic cultivation, Antibacterial activity, Antioxidant activity, Prebiotic properties |
| 相關次數: | 點閱:156 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微藻為優質的碳循環材料,由於其具備良好之固碳能力,使微藻生長對於地球溫室氣體減量具有重要的貢獻。而且微藻富含許多高價值的產物,像是色素、不飽和脂肪酸與功能性藻蛋白等,使其具有高值化開發的潛力。然而商業化的最大挑戰是生產成本過高,因此建立低成本的藻體量產技術以及微藻生物質高值化技術有其必要性。以循環經濟概念利用微藻能使廢棄物轉換為食品、飼料、化肥、營養品、化妝品、化學品與能源等,使其成為一項極具有前瞻性的永續材料是近年的研究熱點。基於綠藻的蛋白質含量相當豐富並且可提供多元的必需胺基酸,是極佳的蛋白質主要補充來源,因此本研究即針對本土藻株之功能性蛋白質生產進行一系列之探討。在本研究中,選用了六株本土藻種Synechococcus elongatus PCC7002、Chlamydomonas reinhardtii CC-400、Chlorella variabilis、Chlorella vulgaris ESP-31、Chlorella vulgaris FSP-E與Chlorella sorokiniana,當中篩選出具高蛋白質生產力的小球藻Chlorella vulgaris FSP-E (CV) 與Chlorella sorokiniana (CS),進行優化蛋白生產程序。結果顯示,調控兩種微藻的生長條件中,二氧化碳濃度在2% 到17%時,最佳二氧化碳濃度為5% (v/v);氮源濃度在2 mM到72 mM時,CV與CS的最佳氮源濃度分別為12 mM硝酸鈉與氯化銨。調控微量鐵元素能有效刺激微藻生長,在微藻培養下添加12 mg/L檸檬酸鐵銨(III)可增加CV與CS的生物量 (4.08 g/L與4.24 g/L)、生物量產率 (583.0 mg/L/d與606.3 mg/L/d) 與蛋白質產量 (793.3 mg/L與812.8 mg/L),並分別增加CV與CS之蛋白質產率4.86倍與2.77倍 (113.3 mg/L/d與116.1 mg/L/d)。本研究進而採用半批式培養策略,透過80% 培養基置換率連續增加藻體內蛋白含量,使CV與CS可獲得最高生物量 (4.56 g/L與4.75 g/L)、蛋白質產量 (794.2 mg/L與852.2 mg/L) 與蛋白含量 (394.8 mg/g DCW與424.4 mg/g DCW)。由本研究獲得之微藻蛋白經氨基酸分析含有40% 必需氨基酸,且扮演卡爾文循環中能量儲存的一重要角色;在活性特性分析方面,CV與CS蛋白具有益生元活性,分別使益生菌鼠李糖乳桿菌Lactobacillus rhamnosus ZY之生長速率提升48% 與74%。且CV與CS蛋白具有良好的抗菌功能,分別對六株病原菌Aeromonas hydrophila、Bacillus cereus、Escherichia coli、 Pseudomonas putida、Rhodococcus erythropolis與Staphylococcus aureus形成抑菌圈直徑範圍為1.30公分 ~ 1.60公分。CV與CS蛋白更分別具有51.7% 與54.9% 之高羥基自由基清除率,商業用IC50值高達10.3 g/L與6.6 g/L。
Microalgae are high-quality carbonic circular materials. Due to their great carbon-fixing capacity, growth of microalgae makes a considerable contribution to the global greenhouse gas reduction. Moreover, microalgae contain many high-value products, such as pigments, unsaturated fatty acids and functional algal proteins, which have the potential for high-value utilization. However, the biggest challenge for commercialization is the high production cost. Therefore, it is necessary to establish low-cost biomass production techniques of microalgae and high-value technology for microalgal biomass. Microalga is one of the most promising sustainable feedstock as it uptakes waste to convert to large range of sectors: food, feed, fertilizers, nutraceuticals, cosmetics, chemicals, energy, etc. via a circular economy concept, which becomes research hotspot in recent years. According to the abundance of protein content and a variety of essential amino acids in microalgae, they are considered as the major sources of protein supplement. Therefore, a series of discussions on the functional proteins production from native algal strains were examined in this study. In this study, six indigenous algal strains, Synechococcus elongatus PCC7002, Chlamydomonas reinhardtii CC-400, Chlorella variabilis, Chlorella vulgaris ESP-31, Chlorella vulgaris FSP-E and Chlorella sorokiniana were selected. Two kinds of protein-rich microalgae, Chlorella vulgaris FSP-E (CV) and Chlorella sorokiniana (CS), were screened as promising sources for algal proteins due to their high protein productivity. Procedure for optimization of functional proteins production was further carried out. As a result of growth regulation of CV and CS, the optimal CO2 concentration for the growth of both microalgae was 5% (v/v) by adjusting the CO2 concentration from 2% to 17%. The optimal nitrogen source for CV and CS were 12 mM of NaNO3 and NH4Cl by adjusting the nitrogen concentration from 2 mM to 72 mM, respectively. Regulating trace iron element can effectively stimulate the growth of microalgae. With the addition of 12 mg/L ammonium iron (III) citrate, the biomass concentration (4.08 g/L and 4.24 g/L), biomass productivity (583.0 mg/L/d and 606.3 mg/L/d) and protein concentration (793.3 mg/L and 812.8 mg/L) of CV and CS were obtained, representing a 4.86 fold and 2.77 fold increase, respectively, in protein productivity of CV and CS (113.3 mg/L/d and 116.1 mg/L/d). Next, semi-batch cultivation strategy was employed to successively increase protein content of CV and CS at the medium replacement ratio of 80%, achieving the biomass concentration of 4.56 g/L and 4.75 g/L, protein concentration of 794.2 mg/L and 852.2 mg/L and protein content of 394.8 mg/g DCW and 424.4 mg/g DCW for CV and CS, respectively. The obtained microalgal proteins consist of 40% essential amino acids, participating in energy conservation in Calvin cycle. In terms of activity characteristics analysis, the CV and CS proteins possess prebiotic activities as they enhanced the growth of Lactobacillus rhamnosus ZY by 48% and 74%, respectively. Moreover, the CV and CS proteins have high antibacterial activities against predominant pathogens. The diameter of inhibition zones for microalgal proteins with six kinds of pathogen strains, such as Aeromonas hydrophila, Bacillus cereus, Escherichia coli, Pseudomonas putida, Rhodococcus erythropolis and Staphylococcus aureus, varied from 1.30 cm to 1.60 cm. The CV and CS proteins, respectively, also possess high hydroxyl free radical scavenging rate of 51.7% and 54.9%, which have commercial IC50 values of 10.3 g/L and 6.6 g/L.
[1] Abinandan, S., Shanthakumar, S., 2015. Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew. Sust. Energ. Rev. 52, 123-132.
[2] Abo, B. O., Odey, E. A., Bakayoko, M., Kalakodio, L., 2019. Microalgae to biofuels production: a review on cultivation, application and renewable energy. Rev. Environ. Health 34(1), 91-99.
[3] Alobwede, E., Leake, J. R., Pandhal, J., 2019. Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma 334, 113-123.
[4] Ayre, J. M., Moheimani, N. R., Borowitzka, M. A., 2017. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res. 24, 218-226.
[5] Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W., Yeap, S. K., 2017. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ, 5, e3473.
[6] Barreiro, D. L., Samorì, C., Terranella, G., Hornung, U., Kruse, A., Prins, W., 2014. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction. Bioresour. Technol. 174, 256-265.
[7] Becker, E. W., 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25(2), 207-210.
[8] Becker, W., 2004. 18 microalgae in human and animal nutrition. In Handbook of microalgal culture: biotechnology and applied phycology (Vol. 312).
[9] Belarbi, E. H., Molina, E., Chisti, Y., 2000. RETRACTED: A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil.
[10] Bleakley, S., Hayes, M., 2017. Algal proteins: extraction, application, and challenges concerning production. Foods 6(5), 33.
[11] Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1-2), 248-254.
[12] Briat, J. F., Dubos, C., Gaymard, F., 2015. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 20(1), 33-40.
[13] Brodie, J., Lewis, J., 2007. Unravelling the algae: the past, present, and future of algal systematics. CRC Press.
[14] Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B.,
[15] Misselbrook, T., 2011. Manure management: implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 166, 514-531.
[16] Chae, S. R., Hwang, E. J., Shin, H. S., 2006. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 97(2), 322-329.
[17] Chen, C. Y., Lee, P. J., Tan, C. H., Lo, Y. C., Huang, C. C., Show, P. L., Lin, C. H., Chang, J. S., 2015. Improving protein production of indigenous microalga Chlorella vulgaris FSP‐E by photobioreactor design and cultivation strategies. Biotechnol. J. 10(6), 905-914.
[18] Chen, C. Y., Kao, A. L., Tsai, Z. C., Shen, Y. M., Kao, P. H., Ng, I. S., Chang, J. S., 2017. Expression of Synthetic Phytoene Synthase Gene to Enhance β‐Carotene Production in Scenedesmus sp. CPC2. Biotechnol. J. 12(11), 1700204.
[19] Chen, C. Y., Lu, I. C., Nagarajan, D., Chang, C. H., Ng, I. S., Lee, D. J., Chang, J. S., 2018. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresour. Technol. 253, 141-147.
[20] Chernomorsky, S., Segelman, A., Poretz, R. D., 1999. Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratogen. Carcin. Mut. 19(5), 313-322.
[21] Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J., Chang, J. S., 2017. Microalgae biorefinery: high value products perspectives. Bioresour. Technol. 229, 53-62.
[22] Chia, M. A., Lombardi, A. T., Melao, M. D. G. G., 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. An. Acad. Bras. Ciênc. 85(4), 1427-1438.
[23] Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S. M., Ling, T. C., Nagarajan, D., Lee, D. J., Chang, J. S., 2018. Sustainable approaches for algae utilisation in bioenergy production. Renew. Energ. 129, 838-852.
[24] Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294-306.
[25] Choi, J. A., Kim, D. Y., Seo, Y. H., Han, J. I., 2016. Application of Fe (NO3) 3-based as nitrogen source and coagulant for cultivation and harvesting of Chlorella sorokiniana. Bioresour. Technol. 222, 374-379.
[26] Dashwood, R., Negishi, T., Hayatsu, H., Breinholt, V., Hendricks, J., Bailey, G., 1998. Chemopreventive properties of chlorophylls towards aflatoxin B1: a review of the antimutagenicity and anticarcinogenicity data in rainbow trout. Mutat. Res-Fund. Mol. M. 399(2), 245-253.
[27] De-Bashan, L. E., Antoun, H., Bashan, Y., 2005. Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol. 54(2), 197-203.
[28] Demmig-Adams, B., Adams, W. W., 2002. Antioxidants in photosynthesis and human nutrition. Science, 298(5601), 2149-2153.
[29] Estevez, M. S., Malanga, G., Puntarulo, S., 2001. Iron-dependent oxidative stress in Chlorella vulgaris. Plant Sci. 161(1), 9-17.
[30] Fernandez, E., Galvan, A., 2007. Inorganic nitrogen assimilation in Chlamydomonas. Journal of experimental botany, 58(9), 2279-2287.
[31] Ganuza, E., Anderson, A. J., & Ratledge, C., 2008. High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnol. Lett. 30(9), 1559.
[32] Gasparri, N.I., Grau, H.R., Angonese, J.G., 2013. Linkages between soybean and neotropical deforestation: coupling and transient decoupling dynamics in a multi-decadal analysis. Global Environ. Change 23(6), 1605-1614.
[33] Gong, M., Bassi, A., 2016. Carotenoids from microalgae: a review of recent developments. Biotechnol. Adv. 34(8), 1396-1412.
[34] Götz, H., Arnold, C. G., 1980. Analysis of ribosomal proteins from various species of algae comparative electrophoretic study on proteins from chloroplast ribosomes. Biochem. Physiol. Pfl. 175(1), 1-8.
[35] Gouveia, L., Oliveira, A. C., 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biot. 36(2), 269-274.
[36] Grobbelaar, J. U., 2003. Algal Nutrition‒Mineral Nutrition. Handbook of microalgal culture: biotechnology and applied phycology, 95-115.
[37] Grossmann, L., Ebert, S., Hinrichs, J., Weiss, J., 2018. Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal Res. 29, 266-276.
[38] Guedes, A. C., Amaro, H. M., Malcata, F. X., 2011. Microalgae as sources of carotenoids. Mar. drugs 9(4), 625-644.
[39] Henchion, M., Hayes, M., Mullen, A., Fenelon, M., Tiwari, B., 2017. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6(7), 53.
[40] Hong, S. J., Lee, C. G., 2007. Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol. Bioproc. E. 12(2), 165-173.
[41] Howitt, S. M., Udvardi, M. K., 2000. Structure, function and regulation of ammonium transporters in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1-2), 152-170.
[42] Hülsen, T., Hsieh, K., Lu, Y., Tait, S., Batstone, D. J., 2018. Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae–A comparison. Bioresour. Technol. 254, 214-223.
[43] Huang, Y., Cheng, J., Lu, H., He, Y., Zhou, J., Cen, K., 2017. Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2. Biotechnol. biofuels 10(1), 181.
[44] Illman, A. M., Scragg, A. H., Shales, S. W., 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech. 27(8), 631-635.
[45] Jazrawi, C., Biller, P., He, Y., Montoya, A., Ross, A. B., Maschmeyer, T., Haynes, B. S., 2015. Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res. 8, 15-22.
[46] Ko, S. C., Kim, D., Jeon, Y. J., 2012. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem. Toxicol. 50(7), 2294-2302.
[47] Kona, R., Hemalatha, M., Srivastav, K. V., Mohan, S. V., 2017. Regulatory effect of Fe-EDTA on mixotrophic cultivation of Chlorella sp. towards biomass growth and metabolite production. Bioresour. Technol. 244, 1227-1234.
[48] Korhonen, J., Honkasalo, A., Seppälä, J., 2018. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37-46.
[49] Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T., Show, P. L., 2019. Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness.
[50] Lai, C. N., Butler, M. A., Matney, T. S., 1980. Antimutagenic activities of common vegetables and their chlorophyll content. Mutat. Res-Rev Genet. 77(3), 245-250.
[51] Lee, C. G., Lee, C. G., 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechn. 12(6), 979-985.
[52] León-Vaz, A., León, R., Díaz-Santos, E., Vigara, J., Raposo, S., 2019. Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. New Biotechnol. 51, 31-38.
[53] Li, M., Zhou, M., Luo, J., Tan, C., Tian, X., Su, P., Gu, T., 2019. Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresour. Technol. 280, 95-103.
[54] Li, W., Ji, J., Chen, X., Jiang, M., Rui, X., Dong, M., 2014. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohyd. Polym. 102, 351-359.
[55] Liang, X. L., Wang, X. L., Li, Z., Hao, Q. H., Wang, S. Y., 2010. Improved in vitro assays of superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity of isoflavones and isoflavone metabolites. J. Agr. food Chem. 58(22), 11548-11552.
[56] Lin, W. R., Lai, Y. C., Sung, P. K., Tan, S. I., Chang, C. H., Chen, C. Y., Chang, J. S., Ng, I. S., 2018. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J. Taiwan Inst. Chem. E. 93, 131-141.
[57] Ling, X., Guo, J., Zheng, C., Ye, C., Lu, Y., Pan, X., Chen, Z., Ng, I. S., 2015. Simple, effective protein extraction method and proteomics analysis from polyunsaturated fatty acids-producing micro-organisms. Bioproc. Biosyst. Eng. 38(12), 2331-2341.
[58] Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z., Zeng, X., 2009. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohyd. Polym. 78(2), 275-281.
[59] Liu, S., Elvira, P., Wang, Y., Wang, W., 2019. Growth and nutrient utilization of green algae in batch and semicontinuous autotrophic cultivation under high CO2 concentration. Appl. Biochem. Biotech. 1-18.
[60] Liu, X. D., Shen, Y. G., 2004. NaCl‐induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Lett. 569(1-3), 337-340.
[61] Liu, Z. Y., Wang, G. C., Zhou, B. C., 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99(11), 4717-4722.
[62] Lourenço, S. O., Barbarino, E., Lavín, P. L., Lanfer Marquez, U. M., Aidar, E., 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 39(1), 17-32.
[63] Mandalam, R. K., Palsson, B., 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high‐density Chlorella vulgaris cultures. Biotechnol. Bioeng. 59(5), 605-611.
[64] Manuell, A. L., Yamaguchi, K., Haynes, P. A., Milligan, R. A., Mayfield, S. P., 2005. Composition and structure of the 80 S ribosome from the green alga Chlamydomonas reinhardtii: 80 S ribosomes are conserved in plants and animals. J. Mol. Biol. 351(2), 266-279.
[65] Massa, M., Buono, S., Langellotti, A. L., Castaldo, L., Martello, A., Paduano, A., Sacchi, R., Fogliano, V., 2017. Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. New Biotechnol. 36, 8-16.
[66] Mohite, Y. S., Shrivastava, N. D., Sahu, D. G., 2015. Antimicrobial activity of C-phycocyanin from Arthrospira platensis isolated from extreme haloalkaline environment of Lonar Lake. IOSR J. Environ. Sci. Toxicol. Food Technol. 1(4), 40-45.
[67] Moreno-Garcia, L., Adjallé, K., Barnabé, S., Raghavan, G. S. V., 2017. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew. Sust. Energ. Rev. 76, 493-506.
[68] Morimura, Y., Tamiya, N., 1954. Preliminary experiments on the use of Chlorella as human food. Food Technol. 8:179-82.
[69] Murphy, J. D., Drosg, B., Allen, E., Jerney, J., Xia, A., Herrmann, C., 2015. A perspective on algal biogas (pp. 5-35). IEA Bioenergy.
[70] Sivakumar, G., Xu, J., Thompson, R. W., Yang, Y., Randol-Smith, P., Weathers, P. J., 2012. Integrated green algal technology for bioremediation and biofuel. Bioresour. Technol. 107, 1-9.
[71] Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I. V., Ninova, M. S., Kussovski, V. K., 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Tech. 48(7), 1533-1540.
[72] Negishi, T., Rai, H., Hayatsu, H., 1997. Antigenotoxic activity of natural chlorophylls. Mutat. Res-Fund. Mol. M. 376(1-2), 97-100.
[73] Neilson, A. H., Lewin, R. A., 1974. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13(3), 227-264.
[74] Nguyen, T. T., Bui, X. T., Pham, M. D., Guo, W., Ngo, H. H., 2016. Effect of Tris-(hydroxymethyl)-amino methane on microalgae biomass growth in a photobioreactor. Bioresour. Technol. 208, 1-6.
[75] Noack, R., 1974. Energy and Protein Requirements. Report of a Joint FAO/WHO Ad Hoc Expert Committee. WHO Technical Report Series No. 522, 118 S., Genf 1973. Food/Nahrung, 18(3), 329-332.
[76] Pulz, O., Gross, W., 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biot. 65(6), 635-648.
[77] Qiu, R., Gao, S., Lopez, P. A., Ogden, K. L., 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res. 28, 192-199.
[78] Richmond, A. (Ed.)., 2004. Handbook of microalgal culture: biotechnology and applied phycology (Vol. 577). Oxford: Blackwell Science.
[79] Roostaei, J., Zhang, Y., Gopalakrishnan, K., Ochocki, A. J., 2018. Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production. Scientific reports, 8(1), 12528.
[80] Sabarinathan, K. G., Ganesan, G., 2008. Antibacterial and toxicity evaluation of C-phycocyanin and cell extract of filamentous freshwater cyanobacterium–Westiellopsis sps. Eur. Rev. Med. Pharmaco. 12, 79-82.
[81] Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., Vaca-Garcia, C., 2014. Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Res. 3, 61-65.
[82] Sasso, S., Pohnert, G., Lohr, M., Mittag, M., Hertweck, C., 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol. Ecol. 36(4), 761-785.
[83] Scheer, H., 1991. Structure and occurence of chlorophylls.
[84] Schoepp, N. G., Stewart, R. L., Sun, V., Quigley, A. J., Mendola, D., Mayfield, S. P., Burkart, M. D., 2014. System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour. Technol. 166, 273-281.
[85] Seyfabadi, J., Ramezanpour, Z., Khoeyi, Z. A., 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J. Appl. Phycol. 23(4), 721-726.
[86] Sheih, I. C., Wu, T. K., Fang, T. J., 2009. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour. Technol. 100(13), 3419-3425.
[87] Shi, X. M., Zhang, X. W., Chen, F., 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Tech. 27(3-5), 312-318.
[88] Sijtsma, L., De Swaaf, M. E., 2004. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biot. 64(2), 146-153.
[89] Sivaramakrishnan, R., Incharoensakdi, A., 2017. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae. J. Phycol. 53(4), 855-868.
[90] Sobiechowska-Sasim, M., Stoń-Egiert, J., Kosakowska, A., 2014. Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. J. Appl. Phycol. 26(5), 2065-2074.
[91] Solomon, S., Qin, D., Manning, M., Averyt, K., Marquis, M. (Eds.), 2007. Climate change 2007 - the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.
[92] Steinfeld, H., Gerber, P., Wasenaar, T., Castel, V., Rosales, M., de Haan C., 2006. Livestock’s long shadow. Environmental Issues and Options. Food and Agriculture Organisation (FAO) of United Nations.
[93] Stiles, W. A., Styles, D., Chapman, S. P., Esteves, S., Bywater, A., Melville, L., Silkina, A., Lupatsch, I., Fuentes, C., Grünewald C. F., Lovittc R., Chaloner T., Bull A., Morris C., Llewellyn C. A., 2018. Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour. Technol. 267, 732-742.
[94] Suh, I. S., Lee, C. G., 2003. Photobioreactor engineering: design and performance. Biotechnol. Bioproc. E. 8(6), 313.
[95] Sui, Y., Muys, M., Vermeir, P., D'Adamo, S., Vlaeminck, S. E., 2019. Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresour. Technol. 275, 145-152.
[96] Sun, Z., Chen, Y. F., Du, J., 2016. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Plant Biotechnol. 14(2), 557-566.
[97] Tickell, J., Tickell, K., 2003. From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel. Biodiesel America.
[98] Tilman, D., Clark, M., 2014. Global diets link environmental sustainability and human health. Nature 515(7528), 518.
[99] Tornabene, T. G., Holzer, G., Lien, S., Burris, N., 1983. Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb. Tech. 5(6), 435-440.
[100] Tsavalos, A. J., Day, J. G., 1994. Development of media for the mixotrophic/heterotrophic culture ofBrachiomonas submarina. J. Appl. Phycol. 6(4), 431-433.
[101] Uggetti, E., Sialve, B., Latrille, E., Steyer, J. P., 2014. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 152, 437-443.
[102] Unterlander, N., Champagne, P., Plaxton, W. C., 2017. Lyophilization pretreatment facilitates extraction of soluble proteins and active enzymes from the oil-accumulating microalga Chlorella vulgaris. Algal Res. 25, 439-444.
[103] Ursu, A. V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., Michaud, P., 2014. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour. Technol. 157, 134-139.
[104] Van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., Randerson, J.T., 2009. CO2 emissions from forest loss. Nat. Geosci. 2(11), 737.
[105] Varela, J. C., Pereira, H., Vila, M., León, R., 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res. 125(3), 423-436.
[106] Varshney, P., Beardall, J., Bhattacharya, S., Wangikar, P. P., 2018. Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res. 30, 28-37.
[107] Vendruscolo, R. G., Fagundes, M. B., Maroneze, M. M., do Nascimento, T. C., de Menezes, C. R., Barin, J. S., Zepka, L. Q., Jacob-Lopes, E., Wagner, R., 2019. Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioproc. Biosyst. Eng. 1-13.
[108] Waghmare, A. G., Salve, M. K., LeBlanc, J. G., Arya, S. S., 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresour. Bioprocess. 3(1), 16.
[109] Walker, J. E., Saraste, M., Runswick, M. J., Gay, N. J., 1982. Distantly related sequences in the alpha‐and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. EMBO J. 1(8), 945-951.
[110] Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., Ruan, R. R., 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 101(8), 2623-2628.
[111] Wang, L., Liu, H. M., Qin, G. Y., 2017. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem. 234, 314-322.
[112] Wen, Z. Y., Chen, F., 2001. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microb. Tech. 29(6-7), 341-347.
[113] Wen, Z. Y., Chen, F., 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21(4), 273-294.
[114] White, J. A., Hart, R. J., Fry, J. C., 1986. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Anal. Methods Chem. 8(4), 170-177.
[115] Widjaja, A., Chien, C. C., Ju, Y. H., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. E. 40(1), 13-20.
[116] Wilhelm, C., Büchel, C., Fisahn, J., Goss, R., Jakob, T., LaRoche, J., Lavaud, J., Lohr, M., Riebesell, U., Stehfest, K., Valentin, K., Kroth, P. G., 2006. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae.
[117] Xia, A., Herrmann, C., Murphy, J. D., 2015. How do we optimize third‐generation algal biofuels?. Biofuel. Bioprod. Bior. 9(4), 358-367.
[118] Xia, A., Murphy, J. D., 2016. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 34(4), 264-275.
[119] Xie, T., Xia, Y., Zeng, Y., Li, X., Zhang, Y., 2017. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresour. Technol. 233, 247-255.
[120] Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M. S., 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res-Thessalon. 21(1), 6.
[121] Yang, C., Hua, Q., Shimizu, K., 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 6(2), 87-102.
[122] Yuan, F., Yu, R., Yin, Y., Shen, J., Dong, Q., Zhong, L., Song, L., 2010. Structure characterization and antioxidant activity of a novel polysaccharide isolated from Ginkgo biloba. Int. J. Biol. Macromol. 46(4), 436-439.
[123] Zhan, J., Rong, J., Wang, Q., 2017. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int. J. hydrogen Energ. 42(12), 8505-8517.
[124] Zhao, P., Gu, W., Huang, A., Wu, S., Liu, C., Huan, L., Gao, S., Xie, X., Wang, G., 2018. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. J. Phycol. 54(1), 34-43.
[125] Zhu, L., Nugroho, Y. K., Shakeel, S. R., Li, Z., Martinkauppi, B., Hiltunen, E., 2017. Using microalgae to produce liquid transportation biodiesel: what is next?. Renew. Sust. Energ. Rev. 78, 391-400.