簡易檢索 / 詳目顯示

研究生: 詹傑凱
Chan, Chieh-Kai
論文名稱: 以α頻率突發波抑制光基因轉殖小鼠之癲癇活動
Suppression of Epileptic Activities by Alpha-burst Optogenetic Stimulation in Transgenic Mice
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 癲癇光基因刺激α頻率突發波刺激閉迴路控制lithium-pilocarpine
外文關鍵詞: seizures, optogenetic stimulation, alpha-burst stimulation, closed-loop control, lithium-pilocarpine
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顳葉癲癇是一種常見的癲癇型態,可利用藥物和切除手術治療但仍有其限制,而光基因技術是近十年多來研究治療癲癇的新興方法,特點是可選擇特定波長的光控制具感光蛋白的神經元之興奮或抑制。別於電刺激,光基因刺激可針對特定的神經元進行控制且在適當調控下而較無副作用,利用此特性可深入探索癲癇成因和抑制機轉。因此,本研究目的為利用小鼠模型建立狀態辨識器並應用α頻率波光刺激抑制特定型態的癲癇。本研究應用6階自回歸模型由深腦電訊號並估測其參數,再對估測參數使用線性識別分析可將深腦電訊號分為基準訊號、第一類及第二類癲癇型態,再試驗以α頻率突發波光刺激波形,抑制lithium-pilocarpine於Thy1-mhChR2-YFP光基因轉殖小鼠所誘發的癲癇發作並找出最佳波形參數。最後,將狀態辨識器與雷射控制系統整合開關控制為閉迴路控制系統,並以癲癇抑制率和平均抑制時間作為評估光刺激的性能指標,此外所建立的狀態識別器可達平均94.6%放電型態辨識率,結果顯示10mW和6個脈衝數的α頻率突發波光刺激波形的平均抑制成功率達88.7%。最後,本研究認為α頻率突發波光刺激可能為治療顳葉癲癇的方法之一。

    Temporal lobe epilepsy is the most common form of partial epilepsy. Traditional epilepsy treatments included drug therapy, focal resection and electrical stimulation. The optogenetic stimulation is a new approach of treating epilepsy by means of laser lights to excite or inhibit neural circuits via viral transduction of light sensitive channels on the neurons. The advantages of optogenetic stimulation are acting on specified neurons and no adverse effects if controlled properly. It could be used to explore the pathology of seizure and suppression mechanisms. The goal of this study was to suppress seizures during continuous stage of status epilepticus on a lithium-pilocarpine mouse model by using the alpha-burst optical stimulation. In the animal experiment, eleven Thy1-mhChR2-YFP transgenic mice were used. From a series of open-loop experiment, the optimal alpha-burst parameters were found as intensity of 10 mW, 6 pulses per burst and duration of 2s. In particular, a state recognizer integrated with the optimal alpha-burst optical stimulation to realize an on-off closed-loop seizure control system. The state recognizer was consisted of two subsystems, namely a 6th order autoregressive model for fitting the depth-EEG and a linear discriminant analysis program for classifying the states of the brain, i.e. baseline and types of seizure patterns. The results of closed-loop experiments on three subjects showed mean detecting rate for epileptic activity achieved 94.4% and the mean seizure suppression rate was 88.7%. One might conclude that the optogenetic stimulation with alpha-burst pattern is a potential therapy for temporal lobe epilepsy.

    摘要 II 誌謝 XIII 表目錄 XVII 圖目錄 XIX 符號表 XXIII 第一章 緒論 1 1.1. 癲癇介紹 1 1.1.1. 深腦電刺激 2 1.1.2. α頻率突發波刺激 (alpha burst stimulation, αBS) 4 1.2 文獻回顧 4 1.3 動物癲癇模型 6 1.4 研究動機與目的 8 第二章 方法與實驗 9 2.1. 開路實驗設計 10 2.2. 光基因轉殖鼠 11 2.3. 實驗設備 12 2.3.1. 立體定位儀和手術設備 13 2.3.2. 雷射光刺激系統 13 2.3.3. 訊號擷取與控制系統 14 2.4. 實驗步驟 16 2.4.1. 立體定位手術 16 2.4.2. 誘發癲癇 17 2.4.3. 資料收集和分析 20 2.5. 狀態辨識器 21 2.5.1. 自回歸模型(autoregressive model) 21 2.5.2. 線性識別分析 22 2.6. 閉迴路控制的設計 23 2.7. 癲癇抑制指標 26 2.8. 性能指標 31 第三章 結果 35 3.1. Lithium-pilocarpine癲癇模型 35 3.2. 開路實驗結果 39 3.3. 癲癇偵測與型態分類器測試 42 3.4. 閉迴路實驗結果 43 第四章 討論 49 4.1. 低劑量pilocarpine模型癲癇 49 4.2. 癲癇偵測演算法比較 50 4.3. 分類器的特徵選取及性能比較 51 4.4. α頻率突發波之波型參數選擇 53 4.5. 癲癇抑制 55 4.6. 其餘癲癇型態的抑制 59 4.7. 光基因抑制的機制 62 4.8. 可移動小鼠和慢性癲癇模型 62 第五章 結論和未來工作 65 5.1. 結論 65 5.2. 未來工作 66 參考文獻 67

    [1] World Health Organization, "Epilepsy", Fact Sheets, 2016.
    [2] Commission on Classification and Terminology of the International League Against Epilepsy, "Proposal for revised classification of epilepsies and epileptic syndromes", Epilepsia, 30: 389-399, 1989.
    [3] S. Shinnar, C. O'Dell, and A. T. Berg, "Distribution of epilepsy syndromes in a cohort of children prospectively monitored from the time of their first unprovoked seizure", Epilepsia, 40: 1378-1383, 1999.
    [4] H. G. Wieser, "Mesial temporal lobe epilepsy with hippocampal sclerosis. ILAE Commission report", Epilepsia, 45(6) : 695-714, 2004.
    [5] C.C. Chiang, C.C.-K Lin, M.S. Ju, and D.M. Durand, "High frequency stimulation can suppress globally seizures induced by 4‐AP in the rat hippocampus: An acute in vivo study", Brain Stimulation, 6: 180‐189, 2013.
    [6] B.H. Siah, "Acute suppression of seizure by theta-burst stimulation at ventral hippocampal commissure", M. S. thesis, Dept. of Mech. Eng. NCKU, 2013
    [7] K.B. Kile, N. Tian, and D.M. Durand, "Low frequency stimulation decreases seizure activity in a mutation model of epilepsy", Epilepsia, 51(9): 1745-1753, 2010.
    [8] T. Wyckhuys, R. Raedt, K. Vonck, W. Wadman, P. Boon, "Comparison of hippocampal deep brain stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats", Epilepsy Research, 88: 239‐246, 2010.
    [9] 陳穎兪, 以光基因刺激適應性抑制4-AP誘發之癲癇波,國立成功大學機械工程學系碩士論文, 2015.
    [10] Y. Z. Huang, M. J. Edwards, E. Rounis, et al., "Theta burst stimulation of the human motor cortex", Neuron, 45(2): 201-206, 2005
    [11] J. T. Paz, J. R. Huguenard, "Optogenetics and epilepsy: past, present, and future", Epilepsy current, 15(1): 34-38, 2015
    [12] B. V. Zemelman, G. A. Lee, M. Ng, G. Miesenbock, "Selective photostimulation of genetically chARGed neurons", Neuron, 33: 15-22, 2002.
    [13] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, "Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel", Proceedings of the National Academy of Sciences, 100(24): 13940-13945, 2003.
    [14] E. S Boyden, F. Zhang, E. Bamberg, G. Nagel and K. Deisseroth, "Millisecond‐timescale genetically targeted optical control of neural activity", Nature Neuroscience, 8(9): 1263‐1268, 2005.
    [15] F. Zhang, L. P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, K. Deisseroth, "Multimodal fast optical interrogation of neural circuitry", Nature, 446(5): 633-639, 2007.
    [16] B. Schobert and J. K. Lanyi, "Halorhodopsin is a light‐driven cholride pump", Journal of Biological Chemistry, 257(17): 306‐313, 1982.
    [17] J. Tønnesen, A. T. Sørensen, K. Deisseroth, C. Lundberg, and M. Kokaia, 'Optogenetic control of epileptiform activity', Proceedings of the National Academy of Sciences, 106(29): 12162-12167, 2009.
    [18] J. Wang, D. A. Borton, J. Zhang, R. D. Burwell, and A. V. Nurmikko, "A neurophotonic device for stimulation and recording of neural microcircuits", IEEE EMBS, 2935-2938, 2010
    [19] R. S. Fisher, "Animal models of the epilepsies", Brain research reviews, 14: 245-278, 1989.
    [20] M. R. Sarkisian, "Overview of the current animal models for human seizure and epileptica disorders", Epilepsy & Behavior, 2: 201-216, 2001.
    [21] M. Lévesque, M. Avoli, C. Bernard, "Animal models of temporal lobe epilepsy following systemoic chemoconvulsant administration", Journal of neuroscience methods, 260: 45-52, 2015.
    [22] L. Turski, C. Ikonomidou, W. A. Turski, Z. A. Bortolotto, E. A. Cavalheiro, "Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy", Synapse, 3: 154–171, 1989.
    [23] W. A. Turski, E. A. Cavalheiro, M. Schwarz, S. J. Czuczwar, Z. Kleinrok, L. Turski, "Limbic seizures produced by pilocarpine in rats: behavioral electroencephalographic and neuropathological study", Behave Brain Res, 9: 315–335, 1983.
    [24] E. A. Cavalheiro, "The pilocarpine model of epilepsy", Ital J Neurol Sci, 16: 33–37, 1995.
    [25] E. A. Cavalheiro, D. A. Riche, G. Le Gal La Salle, "Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures", Electroencephalogr Clin Neurophysiol, 53: 581–589, 1982.
    [26] E. A. Cavalheiro, N. F. Santos, M. R. Priel, "The pilocarpine model of epilepsy in mice", Epilepsia, 37(10): 1015–1019, 1996.
    [27] C. J. Müller, M. Bankstahl, I. Gröticke, W. Löscher, "Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: development of spontaneous seizures behavioral alterations and neuronal damage", Eur J Pharmacol, 619: 15–24, 2009.
    [28] J. A. Cardin, M. Carlén, K. Meletis, "Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2", Nat Protoc, 5(2): 247-254, 2010.
    [29] B. R. Arenkiel, J. Peca, I. G. Davison, C. Feliciano, K. Deisseroth, G. J. Augustine, M. D. Ehlers and G. Feng, 'In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2', Neuron, 54: 205-218, 2007.
    [30] George Paxinos, Keith B. J. Franklin, 'The Mouse Brain in Stereotaxic Coordinates ', 2nd, Academic Press, San Diego, CA, 2003.
    [31] G. C. Carter, C. H. Knapp, and A. H. Nuttall, 'Estimation of the Magnitude-Squared Coherence Function Via Overlapped Fast Fourier Transform Processing', IEEE T Acoust Speech, AU21(4): 337-344, 1973.
    [32] A. K. Golińska, "Coherence function in biomedical signal processing: a short review of applications in Neurology, Cardiology and Gynecology", Studies in Logic, Grammar and Rhetoric, 25(38): 73-82, 2011.
    [33] L. Faes, G. Nollo, and R. Antolini. "Investigating the level of significance of the coherence function in cardiovascular variability analysis", Computers in Cardiology 2001 IEEE, 28: 481-484, 2001.
    [34] D. M. Durand and M. Bikson, "Suppression and control of epileptiform activity by electrical stimulation: a review", Proceedings of the IEEE, 89(7): 1065-1082, 2001.
    [35] C.-C. Chiang, T. P. Ladas, L. E. Gonzalez-Reyes, D. M. Durand, "Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy", Brain stimulation, 7: 890-899, 2014.
    [36] R. K. Cooley, C. O. Vanderwolf, "Stereotaxic Surgery in the Rat: A Photographic Series, second edition", A.J. Kirby, London, Ont, 1978.
    [37] A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Shneider, and K. Deisseroth, "An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology", J. Neural Eng. 4: S143-S156, 2007.
    [38] R. A. Fisher, "The use of multiple measurements in taxonomic problems", Annals of eugenics 7(2): 179-188, 1936.
    [39] W. A. Turski, E. A. Cavalheiro, Z. A. Bortolotto, L. M. Mello, M. Schwarz, and L. Turski, "Seizure produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis", Brain research. 321: 237-253, 1984.
    [40] G. Curia, D. Longo, G. Biagini, R. S. G. Jones, and M. Avoli, "The pilocarpine model of temporal lobe epilepsy", J. Neurosci Methods, 172: 143-157, 2008.
    [41] C.-C. Chiang, M.-S. Ju, C.-C. K. Lin, "Description and computational modeling of the whole course of status epilepticus induced by low dose lithium-pilocarpine in rats", Brain research, 1417: 151-162, 2011.
    [42] N. Y. Walton, and D. M. Treiman, "Response of status epilepticus induced by lithium and pilocarpine to treatment with diazepam", Exp. Neu. 101: 267-275, 1988.
    [43] C. V. de Oliveira, J. Grigolette, V. R. Funck, L. R. Ribeiro, L. F. F. Royes, M. R. Fighera, A. F. Furian, and M. S. Oliveira, "Evaluation of potential gender-related differences in behavioral and cognitive alterations following pilocarpine-induced status epilepticus in C57BL/6 mice.", Physilogy & Behavior, 143: 142-150, 2015.
    [44] Y. Zhang, G.-E. Cai, Q. Yang, Q.-C. Lu, S.-T. Li, and G. J, "Time-dependent changes in learning ability and induction of long-term potentiation in the lithium-pilocarpine-induced epileptic mouse model", Epilepsy & Behavior. 17: 448-454, 2010.
    [45] O. Yizhar, E. L. Fenno, J. D. Thomas, M. Mogri, K. Deisseroth, "Optogenetics in neural systems", Neuron, 71: 9-34, 2011.
    [46] P. S. Buckmaster, M. M. Haney, "Factors affecting outcomes of pilocarpine treatment in a mouse model of temporal lobe epilepsy", Epilepsy research, 102: 153-159, 2012.
    [47] S.-F. Liang, H.-C. Wang, and W.-L. Chang, "Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection", EURASIP J. on Advances in Signal Processing, 853434, pp:15, 2010.
    [48] Z. Iscan, Z. Dokur, and D. Tamer, "Classification of electroencephalogram signals with combined time and frequency features", Expert systems with applications, 38: 10499-10505, 2007.
    [49] A.-T. Tzallas, M.-G. Tsipouras, D.-G. Tsalikakis, E.-C. Karvounis, L. Astrakas, S. Konitsioits, and M. Tzaphlidou, "Automated epileptic seizure detection methods: A review study", 2012.
    [50] J. Pillo, and S. S. Kumar, "Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition", Neuroscience, 272: 271-285, 2014.
    [51] F. A. Scorza, R. M. Arida, M. D. G. Naffah-Mazzacoratti, D. A. Scerni, L. Calderazzo, and E. A. Cavalheiro, "The pilocarpine model of epilepsy: what have we learned? ", An Acda Bras Cienc, 81(3): 345-365, 2009.
    [52] E. Krook‐Magnuson, et al., "On‐demand optogenetic control of spontaneous seizures in temporal lobe epilepsy", Nature Communications, 1376(4), 2013.
    [53] Silk, M. Penttonen, A. Ylinen and G. Buzsáki, "Hippocampal CA1 interneurons: an in vivo intracellular labeling study", The Journal of neuroscience, 15(10): 6651-6665, 1995.
    [54] X‐G. Li, P. Somogyi, A. Ylinen, and G. Buzsaki, "The hippocampal CA3 network: an in vivo intracellular labeling study", Journal of Comparative Neurology, 339.2: 181-208, 1994.
    [55] S.-I. Osaka, M. Iwasaki, R. Hosaka, Y. Matsuzaka, H. Tomita, T. Ishizuka, E. Sugano, E. Okumura, H. Yawo, N. Nakasato, T. Tominaga, and H. Mushiake, "Optogenetically induced seizure and the longitudinal hippocampal network dynamics", PloS one, 8(4), 2013.
    [56] 莊瑋智, 應用共同空間型樣法改善EEG控制矯型手於中風病患之復健, 國立成功大學機械工程學系碩士論文, 2013.
    [57] T. P. Ladas, C. C. Chiang, L. E. Gonzalez-Reyes, T. Nowak, and D. M. Durand, "Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation", Experimental Neurology, 269, 120-132, 2015.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE