簡易檢索 / 詳目顯示

研究生: 游禮維
You, Li-wei
論文名稱: 資產定價理論中有關聯立迴歸方程式之等價性檢定
Testing the Equivalence of Regressions for the Capital Asset Pricing Models
指導教授: 陳占平
Chen, Jan-Peing
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 50
中文關鍵詞: 水準和檢力無差異區域學生化全距檢定最保守均數組合
外文關鍵詞: Level and power, Indifference zone, Studentized range test, Least favorable configuration
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在使用單一樣本抽樣方法之下,定義兩個學生化全距檢定統計量,
    以檢定數個簡單迴歸模型中的 α 係數(截距)及 β 係數(斜率)是否等價, 並將其運用在資產定價理論(Capital Asset Pricing Model)當中。 在虛無假設成立時,根據達到最大水準之均數組合,可求得最大的顯著水準;在對立假設成立時,根據達到最小檢力之均數組合,可求得最小的檢力。在均數組合之下,水準和檢力與未知的 α 係數、 β 係數和變異數是獨立的。給定顯著水準,可同時求得學生化全距檢定統計量的臨界值和檢力。我們提供計算臨界值以及檢力的電腦程式,並將檢定方法運用於共同基金的資料上。

    A studentized range test using the usual one-sample sampling procedure is proposed for testing the hypothesis of equivalence of alpha intercepts and beta slopes for the capital asset pricing regression models against an alternative hypothesis of inequivalence. Both the maximum level and the minimum power of the proposed test associated with these hypotheses are obtainable at
    their corresponding least favorable mean configurations; it can be seen that they are completely independent of the unknown alphas, betas and the unknown variance. For a given level, the critical value and the power for an experiment can be simultaneously determined. Computer programs to calculate the critical values and the power are provided for practitioners. A real example in mutual fund is demonstrated.

    1 Introduction 1 2 One Sample Sampling Procedure and Range Test 2 3 Numerical Calculation 10 4 Example 13 5 Conclusion and Discussion 18 References 19 Appendix A 21 Appendix B 46

    Bau, J. J., Chen, H. J. and Xiong, M. (1993). Percentage Point of the Studentized Range Test
    for Dispersion of Normal Means. J. Statist. Comput. Simul., Vol. 44, 149-263.
    Berger, J. O. (1985). Statistical Decision Theory, 2nd edition, Springer-Verlag, N.Y.
    Chen, H. J. (1975). Strong Consistency and Asymptotic Unbiasedness of a Natural Estimator for
    a Ranked Parameter. Sankhya B, 38, 92-94.
    Chen, H. J. (2004-6). Evaluation on U.S. mutual funds and retirement pension calculation. A
    research talk for Department of Accountancy, National Cheng-Kung University, Tainan, May
    14, 2004; for Department of Accountancy, Tung-Hai University, Taichung, Dec 14, 2005; and
    for Graduate School of Business, Zhejiang University, Hangzhou, Sept 22, 2006, Mutual Fund
    Evaluation 20060922.ppt.
    Chen, H. J. and Wen, M. J. (2004). Evaluation on the largest U.S. mutual funds. The Third
    Conference on Cross-Strait Industrial Development and Management, April 6, 2004, Hainan
    University and Cheng Kung University, 95-98.
    Chen, H. J., Xiong, M. and Lam, K. (1993). Range Tests for the Dispersion of Several Location
    Parameters. Journal of Statistical Planning and Inference, 36, 15-25.
    Chen, S. Y. and Chen, H. J. (1999). A Range Test for the Equivalency of Means under Unequal
    Variances. Technometrics, Vol. 41, No. 3, 250-260.
    Chow, S. C. and Liu, J. P. (1992). Design and Analysis of Bioavailability and Bioequivalence
    Studies, New York: Marcel Dekker.
    Giani, G and Finny H. (1991). Some General Results on Least Favorable Parameter Configura-
    tions with Special Reference to Equivalence and the Range Statistics. Journal of Statistical
    Planning and Inference, 28, 33-47.
    Hayter, A. J. and Liu, W. (1990). The Power Function of the Studentized Range Test. The
    Annals of Statistics, 18, 465-468.
    Hogg, R. V., McKean, J. W., and Craig, A. T. (2005). Introduction to mathematical statistics,
    6th edition, Upper Saddle River, N.J.: Pearson Education.
    Lehmann, E. L. (1986). Testing Statistical Hypothesis, 2nd edition, Wiley, N. Y.
    Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risk Investments in Stock
    and Capital Budgets. The Review of Economics and Statistics, 47, 13-37.
    Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions
    of Risk. The Journal of Finance, 19, 425-442.
    Wen, M. J., Chen, H. J. and Chuang, C. J. (2005). The Level and Power of a Studentized
    Range Test for Testing the Dispersion of Normal Mean. Technical Report No. 68, July 2005,
    Department of Statistics, National Cheng Kung University, Tainan, Taiwan. This manuscript
    can be viewed on http://www.stat.ncku.edu.tw/faculty/mjwen/MjWenTR.htm
    (TR68DispersionofNormalMean940707).

    下載圖示 校內:2010-06-20公開
    校外:2010-06-20公開
    QR CODE