| 研究生: |
康凱舜 Kang, Kai-Shun |
|---|---|
| 論文名稱: |
氮化鋁鎵/氮化鎵異質接面光電晶體之特性分析 Characterizations of AlGaN/GaN Hetero-junction Photo Transistors |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 光電晶體 、氮化鋁鎵 、氮化鎵 、異質接面 |
| 外文關鍵詞: | GaN, AlGaN, photo-transistors, hetero-junction |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對氮化鎵/氮化鋁鎵系列異質接面光電晶體作為紫外光波段偵測器之相關製作與研究,包括於磊晶結構中有無插入一層低溫成長氮化鎵層 (LT-GaN) 之兩種異質接面光電晶體,並比較其元件訊號放大效果以及響應時間的改變。
為克服傳統 PIN 結構於紫外光波段只能得到極小的光響應值,故利用 NPN 磊晶結構之光電晶體為結合光導體電荷中性原理以及能帶不連續造成電洞累積現象來提高元件內部增益進而得到較高的光響應度。主要於基極 (base) /射極 (emitter) 接面成長異質結構使得能帶不連續形成能障 (barrier),堆積由基極 (base) – 集極 (collector) 吸收接面所激發之電洞,由基極–射極之能障高度的改變而由外部電路補償額外電子於射極進而獲得較高的電流增益。
一般傳統氮化鎵紫外光偵測器的響應時間,主要是受到載子漂移時間與RC時間常數所影響,因此我們在異質結構之光電晶體的射極與基極之間插入一層低溫成長氮化鎵層,與一般異質結構之光電晶體做比較。由於低溫成長氮化鎵的結晶品質較差,載子在傳輸時會被內部缺陷所捕捉,因此我們便可將元件的響應時間從原本載子漂移限制轉換成載子生命期為主導,以加快元件的操作速度。
In this study, AlGaN/GaN hetero-junction photo-transistors (HPTs) in detecting ultraviolet spectra have been fabricated and characterized. One of the HPTs features as low-temperature grown GaN (LT-GaN) insertion layer between based and emitter layers to reduce dark current. The internal gain and response time are also studied for the HPTs with and without the LT-GaN layer.
The lack of internal gain in conventional p-i-n PDs often limits its applications in detecting low incident photon levels. The principle of neutral charges and band bending of band discontinuity in HPTs enhances internal gain and photo response. In principle, the band discontinuity at Base/Emitter hetero-junction leads to accumulation of photo-excited holes originating from the Base/Collector homo-junction. Thus electrons from external circuit must enter the device to neutralize the hole accumulation while the excess electrons inject from Emitter. The free electrons and holes accumulate at two sides of Emitter to change the continuity of band diagram for Base/Emitter junction and then attain high internal gain.
In addition, the conventional PD response time is mainly limited by the carrier drift velocity and RC time constant. To improve the performance regarding to aforementioned phenomena, we inserted a LT-GaN film between Base and Emitter. However, owing to the poor material quality of LT-GaN layer, photo-generated carriers would be trapped by native defects to limit the improvement.
第一章
[1] M. A. Khan, M.S. Shur, J.N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C”, Appl. Phys. Lett. Vol.66, No.9, pp.1083-1085, 1995.
[2] O. Aktas, Z.F. Fan, S.N. Mmohammad, A.E. Botchkarev, and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys. Lett. Vol.69, No25, pp.3872-3874, 1996.
[3] M. A. Khan, A.R. Bhattarai, J.N. Kkuznia, and D.T. Olson, “High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction”, Appl. Phys. Lett. Vol.63, No.9, pp.1214-1215, 1993.
[4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol.65, No.9, pp.1121-1123, 1994.
[5] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J. Nitride Semicond. Res. Vol. 3, 41, 1998.
[6] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett. Vol.62, No.15, pp.1786-1787, 1993.
[7] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol. Vol. 14, pp. R27, 1999.
[8] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett. Vol. 63, No.18, pp.2455-2456, 1993.
[9] Q. Chen ,M.A. Khan ,C.J. Sun and J.W. Yang , “Visible-blind ultraviolet photodetectors based on GaN p-n junctions”, Electron. Lett. Vol.31, No.20, p.1781-1782, 1995.
[10] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini,S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance(Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol.75, No.2, pp. 247-249, 1999.
[11] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High quality visible-blind algan p–i–n photodiodes”, Appl. Phys. Lett. Vol. 74, No.8, pp.1171-1173, 1999.
[12] Q. Chen, J.W. Yang ,A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, M. Asi Khan, D. Kuksenkov, H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection”, Appl. Phys. Lett. Vol.70, No.17, pp.2277-2279, 1997.
[13] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J.A. Munoz, “AlxGa1 – xN:Si Schottky barrier photodiodes with fast response and high detectivity”, Appl. Phys. Lett. Vol.73, No.15, pp.2146-2148 ,1998.
[14] D. Walker ,E. Monroy ,P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, M. Razeghi, “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett. Vol.74, No.6, pp.762-763, 1999.
[15] E. Monroy, F. Calle, E. Mun˜oz, F. Omne`s, “AlGaN metal- semiconductor-metal photodiodes”, Appl. Phys. Lett. Vol.74, No.22, pp.3401-3403, 1999.
第二章
[1] 張憲鋼, “氮化鎵系列PIN紫外光偵測器之研究” 國立中央大學光電科學研究所碩士論文, 2005.
[2] 施敏, “氮化鎵系列PIN紫外光偵測器之研究”半導體元件物理與製作技術第二版” 國立交通大學出版社, 2006.
[3] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scooy Mcpherson, and Holly Marsh, “High gain GaN/AlGaN heterojuction phototransistor”, Appl. Phys. Lett. Vol.73, No.17, pp. 978 - 980, 1998.
[4] Chung-Kun Song, Sang-Hun Lee, Kang-Dae Kim, Jae-Hong Park, Bon-Won Koo, Do-Hyun Kim, Chang-Hee Hong, Yong-Kyu Kim, and Sung-Bum Hwang, “Optical Characteristics of InGaP/GaAs HPTs” IEEE Electron Device Letters, Vol.22, No.7, pp.315-317, 2001.
[5] 許永儒, “氮化鎵接面光電晶體之特性量測” 國立成功大學光電科學與工程研究所碩士論文,2007.
[6] J. A. Mittereder, S. C. Binari, P.B.Klein, J.A.roussos, D.S.Katzer, D. F. Storm, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Current collapse induced in AlGaN/GaN high-electron-mobility transistors by bias stress” Appl. Phys. Lett. Vol.83, No.8, pp.1650-1652, 2003.
[7] 黃郁華, “氮化鋁鎵/氮化鎵系列PIN紫外光偵測器之製作與分析” 國立成功大學光電科學與工程研究所碩士論文, 2006.
[8] M. Razegh and M. Henini “Optoelectronic Devices: III-Nitrides”,2004.
第三章
[1] M. L. Lee, J. K. Sheu, and Yung-Ru Shu “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio”, Appl. Phys. Lett. Vol. 92, No.5, pp.053506-1 - 053506-3, 2008.
[2] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y.K. Su, M. G. Chen,C. J. Kao, J. M. Tsai and G.C. Chi “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer”, J. Appl. Phys., Vol.94, pp.1753-1757, 2003.
第四章
[1] L. McCarthy, I. Smorchkova, and H. Xing, P. Fini, S. Keller, J. Speck, and S. P. Den, BaarsM. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaNÕGaN heterojunction bipolar transistors”, Appl. Phys. Lett. Vol. 78, No.15, pp.2235-2237, 2001.
[2] M. L. Lee, J. K. Sheu and S. W. Lin, “Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer” Appl. Phys. Lett. Vol.88, pp.032103-1 – 032103-3, 2006.
[3] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes” Appl.Phys. Lett. Vol.86, pp.052103-1 – 052103-3, 2005.
[4] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, “High gain GaN/AlGaN heterojunction phototransistor”, Appl. Phys. Lett. Vol.73, No.17, pp.978-980, 1998.