簡易檢索 / 詳目顯示

研究生: 康凱舜
Kang, Kai-Shun
論文名稱: 氮化鋁鎵/氮化鎵異質接面光電晶體之特性分析
Characterizations of AlGaN/GaN Hetero-junction Photo Transistors
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 57
中文關鍵詞: 光電晶體氮化鋁鎵氮化鎵異質接面
外文關鍵詞: GaN, AlGaN, photo-transistors, hetero-junction
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對氮化鎵/氮化鋁鎵系列異質接面光電晶體作為紫外光波段偵測器之相關製作與研究,包括於磊晶結構中有無插入一層低溫成長氮化鎵層 (LT-GaN) 之兩種異質接面光電晶體,並比較其元件訊號放大效果以及響應時間的改變。
    為克服傳統 PIN 結構於紫外光波段只能得到極小的光響應值,故利用 NPN 磊晶結構之光電晶體為結合光導體電荷中性原理以及能帶不連續造成電洞累積現象來提高元件內部增益進而得到較高的光響應度。主要於基極 (base) /射極 (emitter) 接面成長異質結構使得能帶不連續形成能障 (barrier),堆積由基極 (base) – 集極 (collector) 吸收接面所激發之電洞,由基極–射極之能障高度的改變而由外部電路補償額外電子於射極進而獲得較高的電流增益。
    一般傳統氮化鎵紫外光偵測器的響應時間,主要是受到載子漂移時間與RC時間常數所影響,因此我們在異質結構之光電晶體的射極與基極之間插入一層低溫成長氮化鎵層,與一般異質結構之光電晶體做比較。由於低溫成長氮化鎵的結晶品質較差,載子在傳輸時會被內部缺陷所捕捉,因此我們便可將元件的響應時間從原本載子漂移限制轉換成載子生命期為主導,以加快元件的操作速度。

    In this study, AlGaN/GaN hetero-junction photo-transistors (HPTs) in detecting ultraviolet spectra have been fabricated and characterized. One of the HPTs features as low-temperature grown GaN (LT-GaN) insertion layer between based and emitter layers to reduce dark current. The internal gain and response time are also studied for the HPTs with and without the LT-GaN layer.
    The lack of internal gain in conventional p-i-n PDs often limits its applications in detecting low incident photon levels. The principle of neutral charges and band bending of band discontinuity in HPTs enhances internal gain and photo response. In principle, the band discontinuity at Base/Emitter hetero-junction leads to accumulation of photo-excited holes originating from the Base/Collector homo-junction. Thus electrons from external circuit must enter the device to neutralize the hole accumulation while the excess electrons inject from Emitter. The free electrons and holes accumulate at two sides of Emitter to change the continuity of band diagram for Base/Emitter junction and then attain high internal gain.
    In addition, the conventional PD response time is mainly limited by the carrier drift velocity and RC time constant. To improve the performance regarding to aforementioned phenomena, we inserted a LT-GaN film between Base and Emitter. However, owing to the poor material quality of LT-GaN layer, photo-generated carriers would be trapped by native defects to limit the improvement.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 簡介 1 1-1研究背景 1 1-2紫外光偵測器簡介及其種類 2 參考文獻 4 第二章 實驗原理與裝置 7 2-1光電晶體工作原理 7 2-1-1光偵測器照光吸收機制 7 2-1-2雙極性電晶體基本觀念 9 2-1-3光電晶體光檢測機制 10 2-2光偵測器量子效率(Quantum efficiency)與吸收係數(Absorption coefficient) 13 2-3光電晶體之光響應度(Responsivity)光增益值(Optical gain)與偵測率(Detectivity) 15 2-4光暗電流之不理想因素 17 2-5響應速度(Response speed) 18 2-6傳輸線模型原理(Transmission line model,TLM) 18 參考文獻 25 第三章 異質接面光電晶體設計與製作 26 3-1異質接面NPN光電晶體 26 3-1-1設計動機與磊晶結構 26 3-1-2 元件製作流程 28 3-2 製程與量測儀器簡介 30 參考文獻 37 第四章 實驗結果與分析討論 38 4-1異質接面NPN光電晶體之電性分析 38 4-1-1 TLM量測 38 4-1-2 無低溫成長氮化鎵層之異質接面NPN光電晶體電性分析 39 4-1-3 具有低溫成長氮化鎵層之異質接面NPN光電晶體電性分析 41 4-1-4 有無低溫成長氮化鎵層之異質接面NPN光電晶體電性比較分析 42 4-2 有無低溫成長氮化鎵層之異質接面NPN光電晶體光響應分析 43 4-2-1 無低溫成長氮化鎵層之異質接面NPN光電晶體光響應分析 43 4-2-2 具有低溫成長氮化鎵層之異質接面NPN光電晶體光響應分析 45 4-2-3 有無低溫成長氮化鎵層之異質接面NPN光電晶體光響應分析 46 參考文獻 56 第五章 結論與未來展望 57 表目錄 表4-1異質接面光電晶體之歐姆接觸電阻值 54 表4-2 無低溫成長氮化鎵層之異質接面NPN光電晶體特性比較 55 圖目錄 圖2-1 p-i-n光偵測器在外加偏壓下之能帶圖 20 圖2-2 光偵測器照光下之光子吸收機制 20 圖2-3 (a)電晶體操作於主動模式(b)摻雜圖分布與空乏區(c)能帶圖 21 圖2-4 光導體光偵測示意圖 22 圖2-5 光電晶體光偵測機制示意圖 22 圖2-6 不同材料之量子效率相對波長關係圖 23 圖2-7 傳輸線模型 23 圖2-8 電阻RT與間距L之關係圖 24 圖3-1 異質接面能帶圖 32 圖3-2 異質接面光電晶體偵測機制 32 圖3-3 異質接面NPN光電晶體 33 圖3-4 XRD spectra of HT-GaN and LT-GaN 33 圖3-5 具低溫成長層之異質接面光電晶體 34 圖3-6 光電晶體mesa剖面圖 34 圖3-7 光電晶體剖面圖 35 圖3-8 Alpha-step 機台量測原理示意圖 35 圖3-9 光響應量測系統 36 圖4-1 無低溫成長氮化鎵層之異質接面NPN光電晶體TLM量測 48 (a)集極 (b)射極 48 圖4-2 有低溫成長氮化鎵層之異質接面NPN光電晶體之TLM量測 49 (a)集極 (b)射極 49 圖4-3 無低溫成長氮化鎵層之異質接面NPN光電晶體順向主動模式與反向主動模式電流 50 圖4-4 基極-射極異質接面能帶圖 50 圖4-5 無低溫成長氮化鎵層之異質接面NPN光電晶體光電流與暗電流特性分析 51 圖4-6 具有低溫成長氮化鎵層之異質接面NPN光電晶體順向主動模式與反向主動模式電流 51 圖4-7 具有低溫成長氮化鎵層之異質接面NPN光電晶體光電流與暗電流特性分析 52 圖4-8 有無低溫成長氮化鎵層之異質接面NPN光電晶體光電流比較 52 圖4-9 無低溫成長氮化鎵層之異質接面NPN光電晶體光響應圖 53 圖4-10 具有低溫成長氮化鎵層之異質接面NPN光電晶體光響應圖 53 圖4-11 有無低溫成長氮化鎵層之異質接面NPN光電晶體在0V、7V和10V時之光響應圖 54

    第一章
    [1] M. A. Khan, M.S. Shur, J.N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C”, Appl. Phys. Lett. Vol.66, No.9, pp.1083-1085, 1995.
    [2] O. Aktas, Z.F. Fan, S.N. Mmohammad, A.E. Botchkarev, and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys. Lett. Vol.69, No25, pp.3872-3874, 1996.
    [3] M. A. Khan, A.R. Bhattarai, J.N. Kkuznia, and D.T. Olson, “High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction”, Appl. Phys. Lett. Vol.63, No.9, pp.1214-1215, 1993.
    [4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol.65, No.9, pp.1121-1123, 1994.
    [5] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J. Nitride Semicond. Res. Vol. 3, 41, 1998.
    [6] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett. Vol.62, No.15, pp.1786-1787, 1993.
    [7] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol. Vol. 14, pp. R27, 1999.
    [8] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett. Vol. 63, No.18, pp.2455-2456, 1993.
    [9] Q. Chen ,M.A. Khan ,C.J. Sun and J.W. Yang , “Visible-blind ultraviolet photodetectors based on GaN p-n junctions”, Electron. Lett. Vol.31, No.20, p.1781-1782, 1995.
    [10] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini,S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance(Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol.75, No.2, pp. 247-249, 1999.
    [11] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High quality visible-blind algan p–i–n photodiodes”, Appl. Phys. Lett. Vol. 74, No.8, pp.1171-1173, 1999.
    [12] Q. Chen, J.W. Yang ,A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, M. Asi Khan, D. Kuksenkov, H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection”, Appl. Phys. Lett. Vol.70, No.17, pp.2277-2279, 1997.
    [13] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J.A. Munoz, “AlxGa1 – xN:Si Schottky barrier photodiodes with fast response and high detectivity”, Appl. Phys. Lett. Vol.73, No.15, pp.2146-2148 ,1998.
    [14] D. Walker ,E. Monroy ,P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, M. Razeghi, “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett. Vol.74, No.6, pp.762-763, 1999.
    [15] E. Monroy, F. Calle, E. Mun˜oz, F. Omne`s, “AlGaN metal- semiconductor-metal photodiodes”, Appl. Phys. Lett. Vol.74, No.22, pp.3401-3403, 1999.

    第二章
    [1] 張憲鋼, “氮化鎵系列PIN紫外光偵測器之研究” 國立中央大學光電科學研究所碩士論文, 2005.
    [2] 施敏, “氮化鎵系列PIN紫外光偵測器之研究”半導體元件物理與製作技術第二版” 國立交通大學出版社, 2006.
    [3] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scooy Mcpherson, and Holly Marsh, “High gain GaN/AlGaN heterojuction phototransistor”, Appl. Phys. Lett. Vol.73, No.17, pp. 978 - 980, 1998.
    [4] Chung-Kun Song, Sang-Hun Lee, Kang-Dae Kim, Jae-Hong Park, Bon-Won Koo, Do-Hyun Kim, Chang-Hee Hong, Yong-Kyu Kim, and Sung-Bum Hwang, “Optical Characteristics of InGaP/GaAs HPTs” IEEE Electron Device Letters, Vol.22, No.7, pp.315-317, 2001.
    [5] 許永儒, “氮化鎵接面光電晶體之特性量測” 國立成功大學光電科學與工程研究所碩士論文,2007.
    [6] J. A. Mittereder, S. C. Binari, P.B.Klein, J.A.roussos, D.S.Katzer, D. F. Storm, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Current collapse induced in AlGaN/GaN high-electron-mobility transistors by bias stress” Appl. Phys. Lett. Vol.83, No.8, pp.1650-1652, 2003.
    [7] 黃郁華, “氮化鋁鎵/氮化鎵系列PIN紫外光偵測器之製作與分析” 國立成功大學光電科學與工程研究所碩士論文, 2006.
    [8] M. Razegh and M. Henini “Optoelectronic Devices: III-Nitrides”,2004.

    第三章
    [1] M. L. Lee, J. K. Sheu, and Yung-Ru Shu “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio”, Appl. Phys. Lett. Vol. 92, No.5, pp.053506-1 - 053506-3, 2008.
    [2] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y.K. Su, M. G. Chen,C. J. Kao, J. M. Tsai and G.C. Chi “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer”, J. Appl. Phys., Vol.94, pp.1753-1757, 2003.

    第四章
    [1] L. McCarthy, I. Smorchkova, and H. Xing, P. Fini, S. Keller, J. Speck, and S. P. Den, BaarsM. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaNÕGaN heterojunction bipolar transistors”, Appl. Phys. Lett. Vol. 78, No.15, pp.2235-2237, 2001.
    [2] M. L. Lee, J. K. Sheu and S. W. Lin, “Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer” Appl. Phys. Lett. Vol.88, pp.032103-1 – 032103-3, 2006.
    [3] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes” Appl.Phys. Lett. Vol.86, pp.052103-1 – 052103-3, 2005.
    [4] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, “High gain GaN/AlGaN heterojunction phototransistor”, Appl. Phys. Lett. Vol.73, No.17, pp.978-980, 1998.

    下載圖示 校內:2012-08-01公開
    校外:2012-08-01公開
    QR CODE