| 研究生: |
楊春美 Yang, Chun-Mei |
|---|---|
| 論文名稱: |
氧化鋅奈米結構的合成、元件組裝及性質分析之研究 Preparation, Assembly and Characterization of ZnO-based Nanostructures |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 氧化鋅 、水溶液法 、氧化亞銅 、奈米壓印 、場發射 、太陽能電池 、光催化 |
| 外文關鍵詞: | ZnO, Aqueous solution, Cu2O, Nanoimprinting, Field emission, DSSCs, Photocatalyst |
| 相關次數: | 點閱:137 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
氧化鋅奈米結構具備異向性質、表面效應、小尺寸效應、量子效應以及多樣形貌特性,導致氧化鋅晶體結構或電子結構改變,進而影響氧化鋅之光、電元件特性。本論文以低溫製程、可大面積製作的水溶液法為基礎,利用不同方法,製作具有多種新穎結構的氧化鋅奈米材料(涵蓋奈米棒、奈米管及多層次樹枝狀結構),並探討其成長機制和光電元件與光觸媒應用之特性。
本研究採用低溫(≦95℃)水溶液法製備具準直性氧化鋅奈米棒結構分別於透明導電的玻璃及塑膠基板上。先將鋅電鍍於基板上作為成長氧化鋅的晶種,其優點在於節省製程時間與減少步驟及大面積製作。藉由控制電鍍鋅製程的電流大小,改變電鍍鋅種晶之微結構,探討種晶對氧化鋅奈米棒晶體成長特性的影響。電鍍製程於高電流參數(20 mA/cm2)下,所合成的氧化鋅為纖鋅礦結構,並沿[0001]方向成長。
根據氧化鋅獨特的晶體結構特性,將奈米棒陣列在pH≒10.4的條件下進行選擇性蝕刻(0001) ,製作成中空的奈米管陣列結構。奈米管的外徑取決於奈米棒原本直徑大小,其管壁厚度約數十奈米,在相同元件面積下可獲得較高的表面積,提升光電元件的效能。奈米管、奈米棒陣列與P3HT共軛高分子製作成混成型太陽能電池,效率分別為0.028%以及0.013%,奈米管陣列的效率提升為奈米棒陣列之2.15倍。
本研究除了製備氧化鋅奈米棒陣列外,為獲得更高的比表面積。藉由整合兩種水溶液系統(分別使用KOH及HMTA),製備多層次樹枝狀氧化鋅奈米棒(管)的結構。解析後得知氧化鋅主幹與樹枝狀分枝的磊晶關係為 ,並且沿[0001]方向成長,而樹枝狀側枝與側枝的夾角為60度。依循熱力學定律,為降低表面能,樹支狀分枝會優先成長在奈米管主幹結構的六個側面。根據同質磊晶的原理,其成長機制乃是其主幹與側枝兩者的晶格可互相匹配(coincident lattice matching),意即晶格失配因子(ε)為0%所導致。將奈米棒、奈米管與高表面積多層次樹枝狀氧化鋅結構應用作為染料敏化電池中的電極,其效率分別為0.64%,0.81%以及0.97%。多層次樹枝狀氧化鋅結構相較於最初合成之奈米棒陣列,效率獲得1.52倍之提升。
為有效降低奈米棒陣列結構應用於場發射時的電場屏蔽效應,在研究中結合電鍍鋅種晶層以及無殘留層溶劑輔助壓印法,在導電基板(玻璃及塑膠)上定義出鋅種晶圖案,進而在基板上選擇性成長氧化鋅奈米結構陣列。經圖案化擇區成長的氧化鋅奈米棒陣列,起始電壓與電場增強因子分別由6.19 V/μm及944改善至2.44 V/μm及1537。
本論文藉由水溶液法合成氧化亞銅奈米顆粒/氧化鋅奈米棒混成型異質接面複合材。其中氧化鋅屬於纖鋅礦結構,氧化亞銅為赤銅礦結構,且氧化亞銅顆粒尺寸範圍分布於數十nm到一百 nm。將合成之氧化亞銅奈米顆粒/氧化鋅奈米棒複合材分別進行紫外光光源以及模擬太陽光光源之光催化研究。因異質光觸媒有效抑制載子再結合率,甲基橙染料在經過90 min紫外光照射後,吸收衰減至0.234 (23.4%),且異質奈米結構k值(1.71h-1) 為氧化鋅奈米棒(0.987 h-1)的1.73倍。甲基橙在經過45 min模擬太陽光光源AM 1.5照射後,吸收衰減至0. 28 (28%),複合材的k值(2.804 h-1) 為氧化鋅奈米棒(0.748 h-1)的3.74倍。
Abstract
ZnO based nanostructures have received much attention recently due to their special optoelectronic characteristics. ZnO nanostructures have been studied for the applications in field emitters, nanosensors, transistors, solar cells, and photocatalysis fields.
In this study, nanostructured ZnO (including nanorods, nanotubes and hierarchical branched nanostructures) were fabricated with aqueous solution method at low temperature. The prepared ZnO nanostructures were characterized in terms of morphology, microstructures, growth mechanisms, and optoelectronic applications.
For increasing the aspect ratio, ZnO nanotube arrays were synthesized by selectively etching (0001) of ZnO nanorods with a basic solution (pH value around 10.4). The nanorod and nanotube arrays were covered by a p-type polymer (P3HT) for the fabrication of ZnO-based hybrid solar cell and the efficiency of the hybrid solar cell can be improved around 2.15 times.
In this study, high surface area hierarchical branched nanostructures were also fabricated with an aqueous solution method. Both ZnO nanorod and ZnO branches were found to grow along [0001], and the angle between of them is 60°.
Nanobranches were also successfully grown on the surface of the nanotrunk using a solution method. Because of coincident lattice matching, growth behavior of nanobranches on nanotrunk is identified to homo-epitaxy.
The patterned ZnO nanostructrues were prepared with solvent assistant imprinting and the subsequent aqueous solution method. After patterning process, the emitter density decreases 1.25 times, and the estimated field enhancement factor β and turn on voltage are 1537 and 2.44 V/μm, respectively.
In the last part of the thesis, Cu2O nanoparticle (NP)/ZnO nanorod (NR) hybrid nanocomposites were synthesized via a two-step aqueous solution method. The Cu2O NP/ZnO NR nanocomposites present a better photocatalytic activity, which are 1.73 times and 3.74 times that of pure ZnO NRs under UV light and AM 1.5 solar irradiation, respectively. The better photocatalytic degradation of Cu2O NP/ZnO NR is due to the suppressed recombination ratio of photoinduced electrons/holes pairs under ultraviolet light irradiation. The broadened absorbance peak of Cu2O NP/ZnO NR nanocomposites can lead to a better photocatalytic degradation under AM 1.5 solar irradiation.
In this thesis, the synthesized ZnO based nanostructures via aqueous solution method are promising to be applied in hybrid solar cells, dye-sensitized solar cells (DSSCs), field emission and photocatalysis fields.
參考文獻
1. J. H. Jun, B. Park, K. Cho, S. Kim, Nanotechnology, 20, 505201 (2009)
2. G. Agarwal, R. F. Speyr, J. Electrochem. Soc., 145, 2920 (1998)
3. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nature Mater., 4, 455 (2005)
4. N. Yamazoe, Sensors Actuators, 5, 7 (1991)
5. M. Chen, Z. L. Pei, X. Wang, L. S. Wen, J. Vac. Sci. Technol., A19, 963 (2001)
6. Z. L. Wang, J. Phys.: Condens. Matter, 16, R829 (2004)
7. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 209, 1947 (2001)
8. Z. L. Wang, Materials Today, 26 (2004)
9. Z. L. Wang, Mater. Today, 10, 20 (2007)
10. Z. L. Wang, Adv. Mater., 19, 889 (2007)
11. V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, A. N. Baranov, J. Phys. Chem. A, 115, 4354 (2011)
12. A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong, Appl. Phys. Lett., 76, 550 (2000)
13. B. Meyer, D. Marx, Phys. Rev. B, 67, 035403 (2003)
14. A. Wei, W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Hung, Nanotechnology, 17, 1740 (2006)
15. R. Wang, L. H. King, A. W. Sleight, J. Master. Res., 11, 1659 (1996)
16. H. Hawamoto, R. Konishi, H. Harada, H. Sasakura, Springer proceedings in physics, 38, 314 (1989)
17. B. D. Yao, Y. F. Chan, N. Wang, Appl. Phys. Lett., 81, 757 (2002)
18. Y. Zhao, Y. U. Kwon, Chem. Lett., 33, 1578 (2004)
19. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964)
20. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett., 84, 3376 (2004)
21. W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Appl. Phys. Lett., 80, 4232 (2002)
22. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Appl. Phys. Lett., 81, 3046 (2002)
23. W. T. Chiou, W. Y. Wu, J. M. Ting, Diam. Relat. Mater., 12, 1841 (2003)
24. H. Khallaf, G. Chai, O. Lupan, H. Heinrich, S. Park, A. Schulte, L. Chow, J. Phys. D: Appl. Phys., 42, 135304 (2009)
25. L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001)
26. H. Yuan, Y. Zhang, J. Cryst. Growth, 263, 119 (2004)
27. M. Wang, C. H. Ye, Y. Zhang, G. M. Hua, H. X. Wang, M. G. Kong, L. D. Zhang, J. Cryst. Growth, 291, 334 (2006)
28. Z. T. Chen, L. Gao, J. Cryst. Growth, 293, 522 (2006)
29. F. Xu, Z. Y. Yuan, G. H. Du, T. Z. Ren, C. Volcke, P. Thiry, B. L. Su, J. Non-Cryst. Solids, 352, 2569 (2006)
30. M. Andrés Vergés, A. Mifsud, and C. J. Serna, J. Chem., Soc. Faraday Trans., 86, 959 (1990)
31. L. Vayssiers, K. Keis, A. Hagfeldt, and S. Eric Linquist, Chem. Mater., 13, 4395 (2001)
32. Y. Sun, D. J. Riley, M. N. R. Ashfold, J. Phys. Chem. B, 110, 15186 (2006)
33. Kong X. H., Sun X. M., Li X. M., Li X. L., Li Y. D., Mater. Chem. Phys., 82, 997 (2003)
34. Li Q. C., Kumar V., Li Y., Zhang H. T., Marks T. J., Chang R. P. H., Chem. Mater., 17, 1001 (2005)
35. X. L. Yuan, B. Dierre, J. B. Wang, B. P. Zhang, T. Sekiguchi, J. Nanosci. Nanotechnol., 7, 3323 (2007)
36. 35 A. B. F. Martinson, J. W. Elam, J. T. P. Hup, M. J. Pellin, Nano Lett., 7, 2183 (2007)
37. H. W. Liang, Y. M. Lu, D. Z. Shen, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, X. W. Fan, G. T. Du, Solid State Commun., 137, 182 (2006)
38. Z. P. Zhang, H. D. Yu, Y. B. Wang, M. Y. Han, Nanotechnology, 17, 2994 (2006)
39. G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, Electrochem. Commun., 9, 2784 (2007)
40. L. F. Xu, Q. Liao, J. P. Zhang, X. C Ai., D. S. Xu, J. Phys. Chem. C, 111, 4549 (2007)
41. J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, and D. I. Kwong: Appl. Phys. A, 88, 611 (2007)
42. S. Noriko, H. Hajime, S. Takashi, O. Naoki, S. Isao, K. Kunihito, Adv. Mater., 14, 418 (2002)
43. X. X. Zhang, D. F. Liu, L. H. Zhang, W. L. Li, M. Gao, W. J. Ma, Y. Ren, Q. S. Zeng, Z. Q. Niu, W. Y. Zhou, A. S. Zie, J. Mater. Chem., 19, 962 (2009)
44. X. D. Wang, C. J. Summers, Z. L. Wang, Nano Lett., 4, 423, (2004)
45. C. S. Liu, Masuda Y., Z. W. Li, Q. Zhang, T. Li, Crystal Growth & Design, 9, 2168 (2009)
46. Y. L. Tao, M. Fu, A. L. Zhao, D. W. He, Y. S. Wang, J. Alloys and Comp., 489, 99 (2010)
47. J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, Z. L. Wang, J. Phys. Chem. B, 110, 50 (2006)
48. T. Kawano, J. Yahiro, H. Maki, H. Imai, Chem. Lett., 35, 442 (2006)
49. S.Y.Chou, P. R. Krauss, P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995)
50. E. Kim, Y. Xia, X. M. Zhao, G. M. Whitesides, Advanced Materials, 9, 651 (1997)
51. F. Keller, J. Electrochem. Soc., 100, 411 (1953)
52. K. L. Lai, I. C. Leu, M. H. Hon, J. Micromech. Microeng., 19, 037001 (2009)
53. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005)
54. X. F. Wu, H. Bai, C. Li, G. Lu, G. Q. Shi, Chem. Commun., 1655 (2006)
55. Z. P. Zhang, H. D. Yu, Y. B. Wang, M. Y. Han, Nanotechnology, 17, 2994 (2006)
56. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater., 2, 821 (2003)
57. A. Modinos, Chapter one, “Electron emission from free-electron metal,” in Field, Thermionic, and Second Electron Emission Spectroscopy, Plenum Press, 1-34 (1984)
58. R. H. Fowler, L. Nordheim, Proc.R. Soc. London Ser. A, 119, 173 (1928)
59. T. Utsumi, IEEE Trans. Electron Dev., 38, 2276 (1991)
60. W. I. Milne, K. B. T. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien Binh, O. Groening, J. Mater. Chem., 14, 933 (2004)
61. H. Kallmans, M. Pope, J. Chem. Phys, 30, 585 (1958)
62. C. Y. Kwong, A. B. Djurisi, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 384, 372 (2004)
63. W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Funct. Mater., 16, 1112 (2006)
64. H. Sirringhaus, N. Tessler, R. H. Friend, Science, 280, 1741 (1998)
65. Z. Bao, A. Dodabalapur, A. Lovinger: Appl. Phys. Lett., 69, 4108 (1996)
66. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. N. le, J. D. Decoppet, J. H. Tsai, C. G. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, ACS Nano, 3, 3103 (2009)
67. C. T. Wu, W. P. Liao, J. J. Wu, J. Mater. Chem., 21, 2871 (2011)
68. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater., 4, 455 (2005)
69. E. Galoppini, J. Rochford, H. H. Chen, G. Saraf, Y. C. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B, 110, 16159 (2006)
70. F. Xu, M. Dai, Y. Lu, L. Sun, J. Phys. Chem. C, 114, 2776 (2010)
71. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. D. Yang, Inorg. Chem., 45, 7535 (2006)
72. B. Pradhan, S. K. Batabyal, A. J. Pal, Sol. Energ. Mater. Sol. Cell., 91, 769 (2007)
73. A. J. Cheng, Y. H. Tzeng, Y. Zhou, M. Park, T. H. Wu, C. Shannon, D. Wang, W. W Lee, Appl. Phys. Lett., 92, 092113 (2008)
74. M. L. Cantu, K. Norrman, J. W. Andreasen, N. C. Pastor and F C. Krebs, J. Electrochem. Society, 154, B508 (2007)
75. T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater., 12, 1214 (2000)
76. J. B. Baxter, E. S. Aydil, Appl. Phys. Lett., 86, 53114 (2005)
77. E. Hosono, S. Fujihara, I. Honma, H. Zhou, Adv. Mater., 17, 2091 (2005))
78. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano. Lett., 5, 1231 (2005)
79. J. B. Baxter, E. S. Aydil, Sol. Energy Mater. Sol. Cells, 90, 607 (2006)
80. B. D. Yuhas, P. Yang, J. Am. Chem. Soc., 131, 3756 (2009)
81. J. H. Qiu, M. Guo, X. D. Wang, ACS Appl. Mater. Interfaces 3, 2358 (2011)
82. A. Fujishima, K. Honda, Nature, 37, 238 (1972)
83. J. Gao, J. M. Luther, O. E. Semonin, R. J. Ellingson, A. J. Nozik, M. C. Beard, Nano Lett., 11, 1002 (2011)
84. J. Schrier, D. O. Demchenko, L. W. Wang, Nano Lett., 7, 2377 (2007)65
85. J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, J. Am. Chem. Soc., 129, 1428 (2007)
86. Y. Ma, T. Wang, J. Wu, Y. Feng, W. Xu, L. Jiang, J. Zheng, C. Shu, C. Wang, Nanoscale, 3, 4955 (2011)
87. Z. He, Q. Xu, T. T. Y. Tan, Nanoscale, 3, 4977 (2011)
88. L. Li, J. Lei, T. Ji, Materials Research Bulletin, 46, 2084 (2011)
89. W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, Adv. Mater., 14, 67 (2002)
90. C.C. Hu, J.N. Nian, H.H. Teng, Sol. Energy Mater. Sol. Cells, 92, 1071 (2008)
91. X. Li, F.F. Tao, Y. Jiang, Z. Xu, J. Colloid Interface Sci., 308, 460 (2007)
92. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Taracon, Nature, 407, 496 (2000)
93. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater., 18, 867 (2006)
94. H. G. Zhang, Q. S. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, Adv. Funct. Mater., 17, 2766 (2007)
95. J. Ramı´rez-Ortiz, T. Ogura, J. Medina-Valtierra, S. E. Acosta-Ortiz, P. Bosch, J. A. D. L. Reyes, V. H. Lara, Appl. Surf. Sci., 174, 177 (2001)
96. H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B, 110, 13829 (2006)
97. D. Snoke, Science, 298, 1368 (2002)
98. R. N. Briskman, Sol. Energy Mater. Sol. Cells, 27, 361 (1992)
99. O. Musa, T. Akomolafe, M. J. Carter, Sol. Energy Mater. Sol. Cell, 51, 305 (1998
100. H. M. Yang, J. Ouyang, A. D. Tang, Y. Xiao, X. W. Li, X. D. Dong, Y. M. Yu, Mater. Res. Bull., 41, 1310 (2006)
101. T. Takata, S. Ikeda, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Appl. Catal. A: Gen., 200, 255 (2000)
102. Y. Lin, D. Wang, M. Yang, Q. Zhang, J. Phys. Chem. B, 108, 3202 (2004)
103. Z. L. Wang, J. Phys.: Condens. Matter, 16, 829 (2004)
104. L. W. Ji, S. M Peng., J. S. Wu, W. S. Shih, C. Z. Wu, I. T. Tang, J. of Phys. and Chem. of Solids, 70, 1359 (2009)
105. X. F. Wu, H. Bai, C. Li, G. Lu, G. Q. Shi, Chem. Commun., 1655 (2006)
106. Z. P. Zhang, H. D. Yu, Y. B. Wang, M. Y. Han, Nanotechnology, 17, 2994 (2006)
107. M. Guo, P. Diao, S. Cai, J. Solid State Chem., 178, 1864 (2005)
108. X. Cheng, L. J. Guo, Microelecon. Eng., 71, 288 (2004)
109. R. H. Fowler, L. W. Nordfeim, Proc. R. Soc. A-Math. Phys. Eng. Sci., 119, 173 (1928)
110. A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu, W. Huang, Appl. Phys. Lett., 88, 213102 (2006)
111. C. X. Xu, X. W. Sun, Appl. Phys. Lett., 83, 3806 (2003)
112. C. X. Xu, X. W. Sun, B. J. Chen, Appl. Phys. Lett., 84, 1540 (2004)
113. N. S. Liu, G. J. Fang, W. Zeng, H. Long, L. Y. Yuan, X. Z. Zhao, Appl. Phys. Lett., 95, 153505 (2009)
114. J. Liu, J. C. She, S. Z. Deng, J. Chen, N. S. Xu, J. Phys. Chem. C, 112, 11685 (2008)
115. D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanotechnology, 19, 424016 (2008)
116. G. K. Mor, K. Shankar, M. Paulose, O. K. Vargese, C. A. Grimes: Appl. Phys. Lett., 91, 152111 (2007)
117. C. Roux, M. Leclerc: Macromolecules, 25, 2141 (1992)
118. J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett., 2, 1287 (2002)
119. T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. Tian, Y. B. Jiang, Adv. Funct. Mater., 16, 335 (2006)
120. T. Zhang, W. J. Dong, M. K. Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc., 128, 10960 (2006)
121. J. H. Zhan, Y. S. Bando, J. Q. Hu, D. Golberg, K. J. Kurashima, Small, 1, 62 (2006)
122. J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, X. J. Yin, Appl Phys A, 95, 849 (2009)
123. C. K. Xu, P. Shin, L. L. Cao, Di Gao, J. Phys. Chem. C, 114, 125 (2010)
124. Z. Z. Yang, T. Xu, Y. Ito, Ulrich Welp, W. K. Kwok, J. Phys. Chem. C, 113, 20521 (2009)
125. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, H. J. Sung, Nano. Lett., 11, 666 (2011)
126. S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak, L. Manna, Nano Lett., 5, 445 (2005)
127. D. F. Zhang, L. D. Sun, C. J. Jia, Z. G. Yan, L. P. You, C. H. Yan, J. Am. Chem. Soc., 127, 13492 (2005)
128. R. Ostermann, D. Li, Y. Yin, J. T. McCann, Y. Xia, Nano Lett. 6, 1297 (2006)
129. W. D. Zhang, Nanotechnology, 17, 1036 (2006)
130. T. L. Sounart, J. Liu, J. A. Voigt, J. Hsu, E. D. Spoerke, Z. Tian, Y. Jiang, AdV. Funct. Mater., 16, 335 (2006)
131. H. Yang, H. Zeng, J. Am. Chem. Soc., 127, 270 (2005)
132. X. Gao, Z. Zheng, H. Zhu, G. Pan, J. Bao, F. Wu, D. Song, Chem. Commun., 12, 1428 (2004)
133. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007)
134. H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y Tsai, W. F. Hsieh, J. Phys. Chem. C 112, 16359 (2008)
135. L. E. Greene, M Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem., Int. Ed., 42, 3031 (2003)
136. N. Wang, H. He, L. Han, Appl. Surf. Sci., 256, 7335 (2010)
137. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Journal of Hazardous Materials, 176, 807 (2010)
138. S. F. Chen, W. Zhao, W. Liu, S. J. Zhang, Appl. Surf. Sci., 255, 2478 (2008)
139. S. Hu, F. Zhou, L. Wang, J. Zhang, Catalysis Communications, 12, 794 (2011)