簡易檢索 / 詳目顯示

研究生: 楊春美
Yang, Chun-Mei
論文名稱: 氧化鋅奈米結構的合成、元件組裝及性質分析之研究
Preparation, Assembly and Characterization of ZnO-based Nanostructures
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧化鋅水溶液法氧化亞銅奈米壓印場發射太陽能電池光催化
外文關鍵詞: ZnO, Aqueous solution, Cu2O, Nanoimprinting, Field emission, DSSCs, Photocatalyst
相關次數: 點閱:137下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    氧化鋅奈米結構具備異向性質、表面效應、小尺寸效應、量子效應以及多樣形貌特性,導致氧化鋅晶體結構或電子結構改變,進而影響氧化鋅之光、電元件特性。本論文以低溫製程、可大面積製作的水溶液法為基礎,利用不同方法,製作具有多種新穎結構的氧化鋅奈米材料(涵蓋奈米棒、奈米管及多層次樹枝狀結構),並探討其成長機制和光電元件與光觸媒應用之特性。
    本研究採用低溫(≦95℃)水溶液法製備具準直性氧化鋅奈米棒結構分別於透明導電的玻璃及塑膠基板上。先將鋅電鍍於基板上作為成長氧化鋅的晶種,其優點在於節省製程時間與減少步驟及大面積製作。藉由控制電鍍鋅製程的電流大小,改變電鍍鋅種晶之微結構,探討種晶對氧化鋅奈米棒晶體成長特性的影響。電鍍製程於高電流參數(20 mA/cm2)下,所合成的氧化鋅為纖鋅礦結構,並沿[0001]方向成長。
    根據氧化鋅獨特的晶體結構特性,將奈米棒陣列在pH≒10.4的條件下進行選擇性蝕刻(0001) ,製作成中空的奈米管陣列結構。奈米管的外徑取決於奈米棒原本直徑大小,其管壁厚度約數十奈米,在相同元件面積下可獲得較高的表面積,提升光電元件的效能。奈米管、奈米棒陣列與P3HT共軛高分子製作成混成型太陽能電池,效率分別為0.028%以及0.013%,奈米管陣列的效率提升為奈米棒陣列之2.15倍。
    本研究除了製備氧化鋅奈米棒陣列外,為獲得更高的比表面積。藉由整合兩種水溶液系統(分別使用KOH及HMTA),製備多層次樹枝狀氧化鋅奈米棒(管)的結構。解析後得知氧化鋅主幹與樹枝狀分枝的磊晶關係為 ,並且沿[0001]方向成長,而樹枝狀側枝與側枝的夾角為60度。依循熱力學定律,為降低表面能,樹支狀分枝會優先成長在奈米管主幹結構的六個側面。根據同質磊晶的原理,其成長機制乃是其主幹與側枝兩者的晶格可互相匹配(coincident lattice matching),意即晶格失配因子(ε)為0%所導致。將奈米棒、奈米管與高表面積多層次樹枝狀氧化鋅結構應用作為染料敏化電池中的電極,其效率分別為0.64%,0.81%以及0.97%。多層次樹枝狀氧化鋅結構相較於最初合成之奈米棒陣列,效率獲得1.52倍之提升。
    為有效降低奈米棒陣列結構應用於場發射時的電場屏蔽效應,在研究中結合電鍍鋅種晶層以及無殘留層溶劑輔助壓印法,在導電基板(玻璃及塑膠)上定義出鋅種晶圖案,進而在基板上選擇性成長氧化鋅奈米結構陣列。經圖案化擇區成長的氧化鋅奈米棒陣列,起始電壓與電場增強因子分別由6.19 V/μm及944改善至2.44 V/μm及1537。
    本論文藉由水溶液法合成氧化亞銅奈米顆粒/氧化鋅奈米棒混成型異質接面複合材。其中氧化鋅屬於纖鋅礦結構,氧化亞銅為赤銅礦結構,且氧化亞銅顆粒尺寸範圍分布於數十nm到一百 nm。將合成之氧化亞銅奈米顆粒/氧化鋅奈米棒複合材分別進行紫外光光源以及模擬太陽光光源之光催化研究。因異質光觸媒有效抑制載子再結合率,甲基橙染料在經過90 min紫外光照射後,吸收衰減至0.234 (23.4%),且異質奈米結構k值(1.71h-1) 為氧化鋅奈米棒(0.987 h-1)的1.73倍。甲基橙在經過45 min模擬太陽光光源AM 1.5照射後,吸收衰減至0. 28 (28%),複合材的k值(2.804 h-1) 為氧化鋅奈米棒(0.748 h-1)的3.74倍。

    Abstract
    ZnO based nanostructures have received much attention recently due to their special optoelectronic characteristics. ZnO nanostructures have been studied for the applications in field emitters, nanosensors, transistors, solar cells, and photocatalysis fields.
    In this study, nanostructured ZnO (including nanorods, nanotubes and hierarchical branched nanostructures) were fabricated with aqueous solution method at low temperature. The prepared ZnO nanostructures were characterized in terms of morphology, microstructures, growth mechanisms, and optoelectronic applications.
    For increasing the aspect ratio, ZnO nanotube arrays were synthesized by selectively etching (0001) of ZnO nanorods with a basic solution (pH value around 10.4). The nanorod and nanotube arrays were covered by a p-type polymer (P3HT) for the fabrication of ZnO-based hybrid solar cell and the efficiency of the hybrid solar cell can be improved around 2.15 times.
    In this study, high surface area hierarchical branched nanostructures were also fabricated with an aqueous solution method. Both ZnO nanorod and ZnO branches were found to grow along [0001], and the angle between of them is 60°.
    Nanobranches were also successfully grown on the surface of the nanotrunk using a solution method. Because of coincident lattice matching, growth behavior of nanobranches on nanotrunk is identified to homo-epitaxy.
    The patterned ZnO nanostructrues were prepared with solvent assistant imprinting and the subsequent aqueous solution method. After patterning process, the emitter density decreases 1.25 times, and the estimated field enhancement factor β and turn on voltage are 1537 and 2.44 V/μm, respectively.
    In the last part of the thesis, Cu2O nanoparticle (NP)/ZnO nanorod (NR) hybrid nanocomposites were synthesized via a two-step aqueous solution method. The Cu2O NP/ZnO NR nanocomposites present a better photocatalytic activity, which are 1.73 times and 3.74 times that of pure ZnO NRs under UV light and AM 1.5 solar irradiation, respectively. The better photocatalytic degradation of Cu2O NP/ZnO NR is due to the suppressed recombination ratio of photoinduced electrons/holes pairs under ultraviolet light irradiation. The broadened absorbance peak of Cu2O NP/ZnO NR nanocomposites can lead to a better photocatalytic degradation under AM 1.5 solar irradiation.
    In this thesis, the synthesized ZnO based nanostructures via aqueous solution method are promising to be applied in hybrid solar cells, dye-sensitized solar cells (DSSCs), field emission and photocatalysis fields.

    總目錄 摘要 I Abstract III 誌謝 V 總目錄 VI 圖目錄 IX 表目錄 XVI 英漢名詞與符號對照表 XVII 第一章 緒論 1 1-1 引言 1 1-2 研究動機與目的 4 第二章 理論基礎 7 2-1 氧化鋅的晶體結構與特性 7 2-2 氧化鋅晶體之合成技術 9 2-2-1 水溶液法之成長 10 2-2-2 奈米棒成長機制 10 2-2-3 奈米管成長機制 11 2-2-4 圖案化擇區成長氧化鋅之理論基礎 12 2-2-5 種晶層輔助成長 18 2-3 場發射之應用原理 18 2-4 太陽能電池之應用原理 22 2-4-1 混成型太陽能電池之應用 24 2-4-2 染料敏化太陽能電池之應用 26 2-5 光催化應用之理論 27 2-5-1 光催化原理 27 2-5-2 異質接面光觸媒之原理 28 2-5-3 選擇甲基橙降解反應之原因 29 第三章 實驗方法 30 3-1 實驗流程 30 3-2 實驗步驟 31 3-2-1 實驗藥品 31 3-2-2 成長一維氧化鋅奈米柱 33 3-2-3 成長一維氧化鋅中空奈米管 35 3-2-4 成長多層次樹枝狀奈米管的新穎結構 35 3-2-5 圖案化擇區成長氧化鋅奈米柱陣列 35 3-2-6 氧化亞銅奈米顆粒/氧化鋅奈米柱複合材之合成 36 3-3 性質量測與分析 36 3-3-1 X射線繞射分析(XRD) 36 3-3-2 掃描式電子顯微鏡分析(SEM) 36 3-3-3 穿透式電子顯微鏡分析(TEM) 37 3-3-4 紫外光-可見光光譜分析(UV-vis) 37 3-3-5 光致發光光譜分析(PL) 37 3-3-6 原子力顯微鏡量測(AFM) 37 3-3-7 場發射性質量測 37 3-3-8 混成型太陽能電池性質量測 38 3-3-9 染料敏化太陽能電池性質量測 40 3-3-10 光催化性能量測 41 第四章 結果與討論 43 4-1 引言 43 4-2 一維氧化鋅奈米結構的成長與光電性質 43 4-2-1 成長一維氧化鋅奈米棒 43 4-2-1-1 形貌分析 44 4-2-1-2 結構分析 44 4-2-1-3 成長機制討論 47 4-2-1-4 圖案化擇區成長氧化鋅奈米陣列 51 4-2-1-5 圖案化氧化鋅奈米陣列場發射性質之量測 59 4-2-2 成長一維氧化鋅中空奈米管 62 4-2-2-1 形貌分析 62 4-2-2-2 結構分析 63 4-2-2-3 成長機制討論 65 4-2-2-4 混成型太陽能電池性質之量測 69 4-3 多層次樹枝狀奈米棒(管)的新穎結構之成長 76 4-3-1 形貌分析 76 4-3-2 結構分析 79 4-3-3 成長機制討論 83 4-3-4 染料敏化太陽能電池性質之量測 87 4-4 氧化亞銅奈米顆粒/氧化鋅奈米棒複合材之合成及光催化特性 91 4-4-1形貌分析 91 4-4-2結構分析 92 4-4-3成長機制討論 95 4-4-4光催化性能之量測 97 第五章 結論 104 第六章 參考文獻 106 圖目錄 Figure 1-1 The wurtzite structure model of ZnO. The tetrahedral coordination of Zn-O is shown [6]. 2 Figure 1-2 the nanostructures of ZnO [6] [8]. 3 Figure 1-3 The investigation subjects in the thesis. 6 Figure 2-1 Wurtzite structure of ZnO with the polar zinc-terminated (0001)-Zn, the polar oxygen-terminated (000 )-O, and the nonpolar (10 0) surfaces [13]. 8 Figure 2-2 (a) SEM image of highly ordered Au nanodot array on GaN. (b) Long-range ordering determined by the AAO template. (c) Highly ordered array with a mean diameter of 60 nm and spacing of 110 nm; and (d) Oblique angle view of vertically aligned nanorod array with a mean length of 400 nm [21]. 15 Figure 2-3 Schematic diagrams of selective ZnO nanorod growth on patterned catalyst array via AFM nanolithography: (a) an Al2O3 substrate is spin-coated with (b) a PMMA layer; (c) pattern are created by an AFM tip (d) Au films are deposited onto the Al2O3 and PMMA films via sputtering; (e) patterned catalyst is achieved; (f) arrayed or patterned, well aligned ZnO nanorods are obtained after applying catalytically activated vapor phase transport and the condensation deposition process[47]. 16 Figure 2-4 (a) A 25°-tilted-view SEM image of the patterned ZnO nanorod arrays (inset: a top-view SEM image of ZnO nanorod arrays). (b, c, d) The capital letters “T”, “U”, and “N” consisting of well-aligned ZnO nanorods. (e) Complex patterns of ZnO arrays: “NANO Gatech” viewed from the top. The inset is an SEM image of the original Au patterns. (f) Side view of the grown ZnO arrays-“NANO Gatech” [47]. 17 Figure 2-5 Energy diagrams of vacuum-metal boundary [57]. 21 Figure 2-6 Various shapes of field emitters and their figures of merit. (a) Rounded whisker. (b) Sharpened pyramid. (c) Hemi-spheroidal. (d) Pyramidal [59]. 21 Figure 2-7 Schematic diagram showing (a) dense CNTs where of the equipotential lines are observed, leading to electric field shielding, and (b) CNTs spaced apart to minimize field shielding [60]. 22 Figure 2-8 Current-voltage curve of solar cells. 24 Figure 2-9 Structure of P3HT (3-hexylthiophene). 25 Figure 2-10 Absorbance spectra of P3HT. 26 Figure 3-1 Flow chart of the experiment for growth, assembly and characterization of ZnO nanostructures-based devices via an aqueous solution method. 30 Figure 3-2 Schematic diagram of electroplating instrument. 34 Figure 3-3 Routes for preparing hybrid nanostructured ZnO on ITO glass substrates. (a-b-c) growth of ZnO NRs (a-b-d) formation of ZnO NTs, and hybrid (a-b-d-e) branched ZnO NTs. 34 Figure 3-4 Schematic illustration of diode structure for measurement of field emission properties. 38 Figure 3-5 Schematic diagram of solar cell instrument. 40 Figure 3-6 Proposed electronic energy-level diagram for ITO/ZnO/P3HT/metal solar cell. 40 Figure 3-7 Schematic diagram of photocatalyst instrument. 42 Figure 4-1 The SEM of ZnO nanorods. 44 Figure 4-2 XRD patterns of well-aligned ZnO nanorods on Zn seeds/ITO/glass substrate. 45 Figure 4-3 XRD pattern of the synthesised ZnO nanorod films by 0.05M zinc nitrate and 0.05M HMTA solution. (a) 2h (b) 5h (c) 18h (d) 24h (e) 29h (f) 48h. The symbol * indicates reflections correspond to the ITO/PET substrate. 46 Figure 4-4 (a) Grain size of Zn nanoparticles for current densities of 1 to 20 mA/cm2. SEM images of Zn seed layer produced with current densities of (b) 1 and (c) 5 mA/cm2 for 1 min at room temperature. 47 Figure 4-5 SEM images of ZnO nanorods fabricated on ITO/glass substrate. (a) Nanorods on Zn seeds are uniformly distributed, whereas (b) those on bare ITO/glass substrate have poor alignment and low density. 49 Figure 4-6 (a) Diameter and (b) aspect ratio versus precursor concentration for Zn seeds deposited at different current densities. SEM images of ZnO grown for 3 h with precursor concentrations of (c) 0.1 and (d) 0.4 M at a temperature of 90℃. The Zn seed layer was produced using a current density of 1 mA/cm2 for 1 min at room temperature. 50 Figure 4-7 SEM micrographs of the patterned Zn seeds fabricated with different electroplating current density of (a) 20, (b) 5, (c) 5 and (d) 1 mA/cm2 for 1 min on the ITO glass. Inserts are the high magnification SEM micrographs. 54 Figure 4-8 SEM micrographs of the patterned Zn seeds fabricated for the reaction time of (a) 1 and (b) 3min on the ITO glass. The current density of electroplating was 5 mA/cm2. SEM micrographs of Zn nanopatterns were proceeded (c) without and (d) with annealing treatment at 300 ℃ for 30 min in air. Inserts are the high magnification SEM micrographs, respectively. 55 Figure 4-9 (a)XRD patterns of ZnO nanorod arrays grown on (A) non-annealed and (B) annealed Zn-seeds on ITO glass substrate from 0.1M Zn(NO3)2•6H2O and HMT (C6H12N4 ) aqueous solution at 90°C for 3h. (b)GIXRD patterns of (A’) Zn seeds/ITO glass and (B’) annealed Zn seeds/ITO glass. The symbol * indicates the reflection from the Zn-seeds on ITO glass substrate. 56 Figure 4-10 Schematic diagram of the patterned growth of ZnO nanorods on the ITO substrate. Insert shows the optical images of the patterned Zn seeds on PET substrate by this technique. 57 Figure 4-11 SEM micrographs of patterned ZnO nanowire arrays with various concentration of Zn(NO3)2 and C6H12N4. (a) nanopattern of Zn seeds; and ZnO nanorods grown from in the reaction solution with concentration of (b)0.025M, and (c)0.1M, respectively. Inserts are the high magnification SEM micrographs 58 Figure 4-12 (a) Field emission characteristics in J-E and ln(J/E2)-1/E (inset) plots of the patterned and non-patterned ZnO field emitters. The straight line is a linear fit to the ln(J/E2)-1/E. (b) The diagram of aspect ratio and density of non-patterned and patterned ZnO NWs. 61 Figure 4-13 (a) SEM image of NRs grown on ITO substrates using 0.2 M equal molar ratio of zinc nitride dehydrate (Zn(NO3)2•6H2O) and hexamethyleneteramine (C6H12N4) at 90℃ for 3 h. (b) and (c) are these ZnO NRs immersed into an ammonia solution (pH=10.6) to form ZnO NTs at 80℃ for 3 h and 9h, respectively. 63 Figure 4-14 XRD patterns of ZnO nanostructure grown by aqueous solution (for nanorods and nanotubes 64 Figure 4-15 TEM image and HRTEM analyses with corresponding selected area electron diffraction pattern for NTs. 65 Figure 4-16 FE-SEM images of ZnO nanorod arrays (a)-(c) synthesized at 90 °C for 3 h from equimolar aqueous solutions of Zn(NO3)2 and hexamethylenetetramine with a concentration of 0.4 M and (d)-(f) after etching in 0.16 M NH3 aqueous solution at 80℃ for 3 h. 67 Figure 4-17 XRD patterns of (a) ZnO nanorod arrays grown on Zn seeds/ITO/glass substrate and ZnO nanotube arrays prepared by etching the nanorods in 0.16 M NH3 aqueous solution at 80℃ for (b) 6 and (c) 9 h. The symbol * indicates the reflection from the ITO/glass substrate. 68 Figure 4-18 Room temperature PL measurement of ZnO NRs and ZnO NTs. 69 Figure 4-19 Device structure consisting of hybrid polymer-P3HT and ZnO blend, sandwiched between ITO and gold electrodes on ITO glass substrate. 72 Figure 4-20 (a) SEM image of a ITO glass/ZnO NRs. (b) SEM image of ITO glass/ZnO NRs/P3HT. Figure 4(c) and (d) The SEM images of (c) and (d) are the top view images of intercalated P3HT into the nanorods structure. 73 Figure 4-21 Schematic of ZnO/ P3HT reflow process. 73 Figure 4-22 AFM images of (a) ZnO NRs on ITO/glass substrate and (b) after infiltration of P3HT into ZnO NRs 74 Figure 4-23 The UV-visible absorption spectra of pristine P3HT, ZnO NRs and blends of P3HT-ZnO, respectively. 74 Figure 4-24 I-V characteristics for P3HT/ZnO devices fabricated with different nanostructural ZnO under 100 mW/cm2. 75 Figure 4-25 SEM images of (a) ZnO NRs (ZNRs), (b) ZnO NTs (ZNTs), (c) B-ZNTs, (d)-(e) High-magnification SEM images of (c), and (f) XRD patterns of ZnO nanostructure arrays. 78 Figure 4-26 (a) Top-view and (b) and (c) cross-sectional SEM images of the branched-ZnO nanostructure arrays on ITO substrate. (d) High- magnification SEM images of top view of the branched-ZnO on nanotubes. 79 Figure 4-27 (a) Typical cross-sectional TEM image of branched-ZnO nanostructure array, (b) HRTEM image of the interfacial region of the trunk and branch (indicated by dashed circle in (a)), HRTEM images of (c) trunk and (e) branch (regions of A and B in (b)), (d) and (f) Corresponding SAED patterns of the trunk and branch in (c) and (e), respectively. (g) Illustration of the angle between the trunk and branch. 82 Figure 4-28 (a) Typical cross-sectional TEM image of a branch. (b) HRTEM image of a branch. (c) Corresponding SAED patterns. 83 Figure 4-29 The samples were prepared on Zn seeds from aqueous solution of 0.4M Zn(NO3)2 and HMTA at 90℃. And branched NTs were prepared from KOH and Zn(NO3)2 solution. 86 Figure 4-30 Typical growth morphologies of one-dimensional ZnO nanostructures and the corresponding facets [103]. 86 Figure 4-31 Basic mechanisms in ZnO based DSSCs. 89 Figure 4-32 J-V characteristics for DSSCs based on ZnO nanostructured arrays with (a)ZnO NRs (b) ZnO NTs, and (c) B-ZNTs. Inserts show SEM images of the various ZnO nanostructures grown on ITO glass substrates. 90 Figure 4-33 (a) SEM image of the cuprous oxide nanoparticles on ZnO NRs. (b) and (c) EDS analyse of Cu2O NP/ZnO NR. 92 Figure 4-34 XRD patterns of Cu2O NP/ZnO NR synthesized at different concentrations of hydrazine hydrate. 94 Figure 4-35 (a) A low-magnification TEM image of cuprous oxide NPs on the ZnO NR. (b) A TEM image of Cu2O NP/ZnO NR. The inset in (b) is a corresponding diffraction pattern of the cuprous oxide. (c) An HRTEM image of the ZnO NR. (d) An HRTEM of the interfacial region of the cuprous oxide NP/ZnO NR, where the fringe spacing corresponding to the d-spacing of Cu2O (100) is 2.13 Å. The inset in (d) is a corresponding diffraction pattern of the cuprous oxide. 94 Figure 4-36 UV-visible absorption of ZnO NRs and Cu2O NP/ZnO NR heterogeneous nanostructures. 95 Figure 4-37 XRD pattern of Cu2O/ZnO NRs synthesized at different concentration of hydrazine. 97 Figure 4-38 Detailed XRD pattern of Cu2O/ZnO NRs. 97 Figure 4-39 Proposed electronic energy-level diagram for ZnO/Cu2O. 101 Figure 4-40 (a) The changes in MO concentration under UV light irradiation over both ZnO and Cu2O/ZnO nanocomposites. (b) The ln(C0/C) vs. time curves of MO photodegradation using various photocatalysts. 102 Figure 4-41 (a) The changes in MO concentration under solar 1.5 AM irradiation over both ZnO and Cu2O/ZnO nanocomposites. (b) The ln(C0/C) vs. time curves of MO photodegradation using various photocatalysts. 103 表目錄 Table 2-1 Fundmental properties of ZnO. [15-16] 8 Table 4-1 The aspect ratio (A.R.), density, turn-on field and field enhancement factor (β) of the non-patterned ((a), (b)) and patterned ((a’), (b’)) ZnO NWs by various concentration. 62 Table 4-2 Hybrid solar cell characteristics for P3HT/ZnO devices fabricated with different nanostructured ZnO. 75 Table 4-3 Photovoltaic properties of N719-sensitized (a) ZnO NRs, (b) ZnO NTs, and (c) ZnO branched NTs DSSCs. 90 Table 4-4 The apparent first-order reaction rate constants for photodegradation of methyl orange under UV light. 102 Table 4-5 The apparent first-order reaction rate constants for photodegradation of methyl orange under solar 1.5 AM irradiation. 103

    參考文獻
    1. J. H. Jun, B. Park, K. Cho, S. Kim, Nanotechnology, 20, 505201 (2009)
    2. G. Agarwal, R. F. Speyr, J. Electrochem. Soc., 145, 2920 (1998)
    3. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nature Mater., 4, 455 (2005)
    4. N. Yamazoe, Sensors Actuators, 5, 7 (1991)
    5. M. Chen, Z. L. Pei, X. Wang, L. S. Wen, J. Vac. Sci. Technol., A19, 963 (2001)
    6. Z. L. Wang, J. Phys.: Condens. Matter, 16, R829 (2004)
    7. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 209, 1947 (2001)
    8. Z. L. Wang, Materials Today, 26 (2004)
    9. Z. L. Wang, Mater. Today, 10, 20 (2007)
    10. Z. L. Wang, Adv. Mater., 19, 889 (2007)
    11. V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, A. N. Baranov, J. Phys. Chem. A, 115, 4354 (2011)
    12. A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong, Appl. Phys. Lett., 76, 550 (2000)
    13. B. Meyer, D. Marx, Phys. Rev. B, 67, 035403 (2003)
    14. A. Wei, W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Hung, Nanotechnology, 17, 1740 (2006)
    15. R. Wang, L. H. King, A. W. Sleight, J. Master. Res., 11, 1659 (1996)
    16. H. Hawamoto, R. Konishi, H. Harada, H. Sasakura, Springer proceedings in physics, 38, 314 (1989)
    17. B. D. Yao, Y. F. Chan, N. Wang, Appl. Phys. Lett., 81, 757 (2002)
    18. Y. Zhao, Y. U. Kwon, Chem. Lett., 33, 1578 (2004)
    19. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964)
    20. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett., 84, 3376 (2004)
    21. W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Appl. Phys. Lett., 80, 4232 (2002)
    22. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Appl. Phys. Lett., 81, 3046 (2002)
    23. W. T. Chiou, W. Y. Wu, J. M. Ting, Diam. Relat. Mater., 12, 1841 (2003)
    24. H. Khallaf, G. Chai, O. Lupan, H. Heinrich, S. Park, A. Schulte, L. Chow, J. Phys. D: Appl. Phys., 42, 135304 (2009)
    25. L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001)
    26. H. Yuan, Y. Zhang, J. Cryst. Growth, 263, 119 (2004)
    27. M. Wang, C. H. Ye, Y. Zhang, G. M. Hua, H. X. Wang, M. G. Kong, L. D. Zhang, J. Cryst. Growth, 291, 334 (2006)
    28. Z. T. Chen, L. Gao, J. Cryst. Growth, 293, 522 (2006)
    29. F. Xu, Z. Y. Yuan, G. H. Du, T. Z. Ren, C. Volcke, P. Thiry, B. L. Su, J. Non-Cryst. Solids, 352, 2569 (2006)
    30. M. Andrés Vergés, A. Mifsud, and C. J. Serna, J. Chem., Soc. Faraday Trans., 86, 959 (1990)
    31. L. Vayssiers, K. Keis, A. Hagfeldt, and S. Eric Linquist, Chem. Mater., 13, 4395 (2001)
    32. Y. Sun, D. J. Riley, M. N. R. Ashfold, J. Phys. Chem. B, 110, 15186 (2006)
    33. Kong X. H., Sun X. M., Li X. M., Li X. L., Li Y. D., Mater. Chem. Phys., 82, 997 (2003)
    34. Li Q. C., Kumar V., Li Y., Zhang H. T., Marks T. J., Chang R. P. H., Chem. Mater., 17, 1001 (2005)
    35. X. L. Yuan, B. Dierre, J. B. Wang, B. P. Zhang, T. Sekiguchi, J. Nanosci. Nanotechnol., 7, 3323 (2007)
    36. 35 A. B. F. Martinson, J. W. Elam, J. T. P. Hup, M. J. Pellin, Nano Lett., 7, 2183 (2007)
    37. H. W. Liang, Y. M. Lu, D. Z. Shen, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, X. W. Fan, G. T. Du, Solid State Commun., 137, 182 (2006)
    38. Z. P. Zhang, H. D. Yu, Y. B. Wang, M. Y. Han, Nanotechnology, 17, 2994 (2006)
    39. G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, Electrochem. Commun., 9, 2784 (2007)
    40. L. F. Xu, Q. Liao, J. P. Zhang, X. C Ai., D. S. Xu, J. Phys. Chem. C, 111, 4549 (2007)
    41. J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, and D. I. Kwong: Appl. Phys. A, 88, 611 (2007)
    42. S. Noriko, H. Hajime, S. Takashi, O. Naoki, S. Isao, K. Kunihito, Adv. Mater., 14, 418 (2002)
    43. X. X. Zhang, D. F. Liu, L. H. Zhang, W. L. Li, M. Gao, W. J. Ma, Y. Ren, Q. S. Zeng, Z. Q. Niu, W. Y. Zhou, A. S. Zie, J. Mater. Chem., 19, 962 (2009)
    44. X. D. Wang, C. J. Summers, Z. L. Wang, Nano Lett., 4, 423, (2004)
    45. C. S. Liu, Masuda Y., Z. W. Li, Q. Zhang, T. Li, Crystal Growth & Design, 9, 2168 (2009)
    46. Y. L. Tao, M. Fu, A. L. Zhao, D. W. He, Y. S. Wang, J. Alloys and Comp., 489, 99 (2010)
    47. J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, Z. L. Wang, J. Phys. Chem. B, 110, 50 (2006)
    48. T. Kawano, J. Yahiro, H. Maki, H. Imai, Chem. Lett., 35, 442 (2006)
    49. S.Y.Chou, P. R. Krauss, P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995)
    50. E. Kim, Y. Xia, X. M. Zhao, G. M. Whitesides, Advanced Materials, 9, 651 (1997)
    51. F. Keller, J. Electrochem. Soc., 100, 411 (1953)
    52. K. L. Lai, I. C. Leu, M. H. Hon, J. Micromech. Microeng., 19, 037001 (2009)
    53. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005)
    54. X. F. Wu, H. Bai, C. Li, G. Lu, G. Q. Shi, Chem. Commun., 1655 (2006)
    55. Z. P. Zhang, H. D. Yu, Y. B. Wang, M. Y. Han, Nanotechnology, 17, 2994 (2006)
    56. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater., 2, 821 (2003)
    57. A. Modinos, Chapter one, “Electron emission from free-electron metal,” in Field, Thermionic, and Second Electron Emission Spectroscopy, Plenum Press, 1-34 (1984)
    58. R. H. Fowler, L. Nordheim, Proc.R. Soc. London Ser. A, 119, 173 (1928)
    59. T. Utsumi, IEEE Trans. Electron Dev., 38, 2276 (1991)
    60. W. I. Milne, K. B. T. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien Binh, O. Groening, J. Mater. Chem., 14, 933 (2004)
    61. H. Kallmans, M. Pope, J. Chem. Phys, 30, 585 (1958)
    62. C. Y. Kwong, A. B. Djurisi, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 384, 372 (2004)
    63. W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Funct. Mater., 16, 1112 (2006)
    64. H. Sirringhaus, N. Tessler, R. H. Friend, Science, 280, 1741 (1998)
    65. Z. Bao, A. Dodabalapur, A. Lovinger: Appl. Phys. Lett., 69, 4108 (1996)
    66. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. N. le, J. D. Decoppet, J. H. Tsai, C. G. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, ACS Nano, 3, 3103 (2009)
    67. C. T. Wu, W. P. Liao, J. J. Wu, J. Mater. Chem., 21, 2871 (2011)
    68. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater., 4, 455 (2005)
    69. E. Galoppini, J. Rochford, H. H. Chen, G. Saraf, Y. C. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B, 110, 16159 (2006)
    70. F. Xu, M. Dai, Y. Lu, L. Sun, J. Phys. Chem. C, 114, 2776 (2010)
    71. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. D. Yang, Inorg. Chem., 45, 7535 (2006)
    72. B. Pradhan, S. K. Batabyal, A. J. Pal, Sol. Energ. Mater. Sol. Cell., 91, 769 (2007)
    73. A. J. Cheng, Y. H. Tzeng, Y. Zhou, M. Park, T. H. Wu, C. Shannon, D. Wang, W. W Lee, Appl. Phys. Lett., 92, 092113 (2008)
    74. M. L. Cantu, K. Norrman, J. W. Andreasen, N. C. Pastor and F C. Krebs, J. Electrochem. Society, 154, B508 (2007)
    75. T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater., 12, 1214 (2000)
    76. J. B. Baxter, E. S. Aydil, Appl. Phys. Lett., 86, 53114 (2005)
    77. E. Hosono, S. Fujihara, I. Honma, H. Zhou, Adv. Mater., 17, 2091 (2005))
    78. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano. Lett., 5, 1231 (2005)
    79. J. B. Baxter, E. S. Aydil, Sol. Energy Mater. Sol. Cells, 90, 607 (2006)
    80. B. D. Yuhas, P. Yang, J. Am. Chem. Soc., 131, 3756 (2009)
    81. J. H. Qiu, M. Guo, X. D. Wang, ACS Appl. Mater. Interfaces 3, 2358 (2011)
    82. A. Fujishima, K. Honda, Nature, 37, 238 (1972)
    83. J. Gao, J. M. Luther, O. E. Semonin, R. J. Ellingson, A. J. Nozik, M. C. Beard, Nano Lett., 11, 1002 (2011)
    84. J. Schrier, D. O. Demchenko, L. W. Wang, Nano Lett., 7, 2377 (2007)65
    85. J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, J. Am. Chem. Soc., 129, 1428 (2007)
    86. Y. Ma, T. Wang, J. Wu, Y. Feng, W. Xu, L. Jiang, J. Zheng, C. Shu, C. Wang, Nanoscale, 3, 4955 (2011)
    87. Z. He, Q. Xu, T. T. Y. Tan, Nanoscale, 3, 4977 (2011)
    88. L. Li, J. Lei, T. Ji, Materials Research Bulletin, 46, 2084 (2011)
    89. W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, Adv. Mater., 14, 67 (2002)
    90. C.C. Hu, J.N. Nian, H.H. Teng, Sol. Energy Mater. Sol. Cells, 92, 1071 (2008)
    91. X. Li, F.F. Tao, Y. Jiang, Z. Xu, J. Colloid Interface Sci., 308, 460 (2007)
    92. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Taracon, Nature, 407, 496 (2000)
    93. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater., 18, 867 (2006)
    94. H. G. Zhang, Q. S. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, Adv. Funct. Mater., 17, 2766 (2007)
    95. J. Ramı´rez-Ortiz, T. Ogura, J. Medina-Valtierra, S. E. Acosta-Ortiz, P. Bosch, J. A. D. L. Reyes, V. H. Lara, Appl. Surf. Sci., 174, 177 (2001)
    96. H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B, 110, 13829 (2006)
    97. D. Snoke, Science, 298, 1368 (2002)
    98. R. N. Briskman, Sol. Energy Mater. Sol. Cells, 27, 361 (1992)
    99. O. Musa, T. Akomolafe, M. J. Carter, Sol. Energy Mater. Sol. Cell, 51, 305 (1998
    100. H. M. Yang, J. Ouyang, A. D. Tang, Y. Xiao, X. W. Li, X. D. Dong, Y. M. Yu, Mater. Res. Bull., 41, 1310 (2006)
    101. T. Takata, S. Ikeda, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Appl. Catal. A: Gen., 200, 255 (2000)
    102. Y. Lin, D. Wang, M. Yang, Q. Zhang, J. Phys. Chem. B, 108, 3202 (2004)
    103. Z. L. Wang, J. Phys.: Condens. Matter, 16, 829 (2004)
    104. L. W. Ji, S. M Peng., J. S. Wu, W. S. Shih, C. Z. Wu, I. T. Tang, J. of Phys. and Chem. of Solids, 70, 1359 (2009)
    105. X. F. Wu, H. Bai, C. Li, G. Lu, G. Q. Shi, Chem. Commun., 1655 (2006)
    106. Z. P. Zhang, H. D. Yu, Y. B. Wang, M. Y. Han, Nanotechnology, 17, 2994 (2006)
    107. M. Guo, P. Diao, S. Cai, J. Solid State Chem., 178, 1864 (2005)
    108. X. Cheng, L. J. Guo, Microelecon. Eng., 71, 288 (2004)
    109. R. H. Fowler, L. W. Nordfeim, Proc. R. Soc. A-Math. Phys. Eng. Sci., 119, 173 (1928)
    110. A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu, W. Huang, Appl. Phys. Lett., 88, 213102 (2006)
    111. C. X. Xu, X. W. Sun, Appl. Phys. Lett., 83, 3806 (2003)
    112. C. X. Xu, X. W. Sun, B. J. Chen, Appl. Phys. Lett., 84, 1540 (2004)
    113. N. S. Liu, G. J. Fang, W. Zeng, H. Long, L. Y. Yuan, X. Z. Zhao, Appl. Phys. Lett., 95, 153505 (2009)
    114. J. Liu, J. C. She, S. Z. Deng, J. Chen, N. S. Xu, J. Phys. Chem. C, 112, 11685 (2008)
    115. D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanotechnology, 19, 424016 (2008)
    116. G. K. Mor, K. Shankar, M. Paulose, O. K. Vargese, C. A. Grimes: Appl. Phys. Lett., 91, 152111 (2007)
    117. C. Roux, M. Leclerc: Macromolecules, 25, 2141 (1992)
    118. J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett., 2, 1287 (2002)
    119. T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. Tian, Y. B. Jiang, Adv. Funct. Mater., 16, 335 (2006)
    120. T. Zhang, W. J. Dong, M. K. Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc., 128, 10960 (2006)
    121. J. H. Zhan, Y. S. Bando, J. Q. Hu, D. Golberg, K. J. Kurashima, Small, 1, 62 (2006)
    122. J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, X. J. Yin, Appl Phys A, 95, 849 (2009)
    123. C. K. Xu, P. Shin, L. L. Cao, Di Gao, J. Phys. Chem. C, 114, 125 (2010)
    124. Z. Z. Yang, T. Xu, Y. Ito, Ulrich Welp, W. K. Kwok, J. Phys. Chem. C, 113, 20521 (2009)
    125. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, H. J. Sung, Nano. Lett., 11, 666 (2011)
    126. S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak, L. Manna, Nano Lett., 5, 445 (2005)
    127. D. F. Zhang, L. D. Sun, C. J. Jia, Z. G. Yan, L. P. You, C. H. Yan, J. Am. Chem. Soc., 127, 13492 (2005)
    128. R. Ostermann, D. Li, Y. Yin, J. T. McCann, Y. Xia, Nano Lett. 6, 1297 (2006)
    129. W. D. Zhang, Nanotechnology, 17, 1036 (2006)
    130. T. L. Sounart, J. Liu, J. A. Voigt, J. Hsu, E. D. Spoerke, Z. Tian, Y. Jiang, AdV. Funct. Mater., 16, 335 (2006)
    131. H. Yang, H. Zeng, J. Am. Chem. Soc., 127, 270 (2005)
    132. X. Gao, Z. Zheng, H. Zhu, G. Pan, J. Bao, F. Wu, D. Song, Chem. Commun., 12, 1428 (2004)
    133. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007)
    134. H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y Tsai, W. F. Hsieh, J. Phys. Chem. C 112, 16359 (2008)
    135. L. E. Greene, M Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem., Int. Ed., 42, 3031 (2003)
    136. N. Wang, H. He, L. Han, Appl. Surf. Sci., 256, 7335 (2010)
    137. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Journal of Hazardous Materials, 176, 807 (2010)
    138. S. F. Chen, W. Zhao, W. Liu, S. J. Zhang, Appl. Surf. Sci., 255, 2478 (2008)
    139. S. Hu, F. Zhou, L. Wang, J. Zhang, Catalysis Communications, 12, 794 (2011)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE