| 研究生: |
張志勤 Chang, Chin-Chen |
|---|---|
| 論文名稱: |
蛋白酵素F1-ATP合成酶之運動模擬 The simulation of the motion of protein enzyme: F1-ATP synthase |
| 指導教授: |
黃明哲
Hung, Ming -Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 運動模擬 、蛋白酵素 |
| 外文關鍵詞: | protein enzyme, F1-ATPase |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將蛋白酵素F1-ATP合成酶(F1馬達)放置於含有ATP的溶液後,可取得化學自由能而使其轉動,在轉動過程中會受到三個作用力影響:黏滯阻力、介質流體的布朗運動以及水解ATP所獲得的驅動位勢能,此三個作用力的影響會使得動力衝程以及熱衝擊在提供驅動F1馬達的貢獻比例上會有所不一樣。
本文會利用Langevin equation計算出在各個時間點上F1馬達轉動所在角位置,以及建構出等效驅動位勢能之外,還會計算出在各個角位置上動力衝程與熱衝擊對驅動F1馬達轉動的貢獻比例。
結果發現若布朗運動對F1馬達做正功,則驅動F1馬達轉動的機制為動力衝程,而且其所輸出力矩較大;若布朗運動對F1馬達做負功,則驅動F1馬達轉動的機制為動力衝程與熱衝擊參半,而且其所輸出力矩較小。
Placed protein enzyme, F1-ATPase (F1 motor) into the aqueous liquid that contains ATP, the chemical free energy will be released. This free energy is used to actuate F1 motor rotation. The speed of rotation will be affected by the following forces: viscous drag force, medium fluid Brownian force and driving potential force by ATP hydrolysis. The contributions of power strokes and thermal excitations actuating the F1 motor rotation will be different under the effect of these forces.
Employing the numerical simulation of the Langevin equation, a sequence of F1 motor angular position versus time is generated. The effective driving potential is then constructed. Finally, the relative contributions of the power strokes and thermal excitation on each angular position are estimated in this paper.
The results are found that when the positive work done by Brownian motion on the F1 motor, the mechanism of motor is power strokes and the output torque from motor is strong. However, when the negative work done on the F1 motor, the mechanism of motor are both power strokes and thermal excitations, but the output torque is small.
1.R. Dean Astumian, “Thermodynamics and kinetics of a Brownian Motor,” SCIENCE, Vol. 276, pp. 917-922, 1997.
2.Yasuda, R., Noji, H., Kinosita, K. and Yoshida, M., “F1-ATPase is a highly efficient molecular motor that rotates with discrete 120°step,” Cell Vol. 93, pp. 1117-1124, 1998.
3.Wang, H. and Oster, G., “Energy transduction in the F1 motor of ATP synthase,” Nature Vol. 396, pp. 279-282, 1998.
4.Oster, G. and Wang, H., “Reverse engineering a protein: the mechanochemistry of ATP synthase,” Biochimica et Biophysica Acta, Vol. 1458, pp. 482-510, 2000.
5.Oster, G. and Wang, H., “Why is the mechanical efficiency of F1 ATPase so high?” J. Bioenerg. Biomembr. Vol. 332, pp. 459-469, 2000.
6.Wang, H. and Oster, G., “Ratchets, power strokes, and molecular motors,” Applied Physics A, Vol. 75, pp. 315-323, 2002.
7.彭英泰, “淺談奈米科技之應用(四),” 小泰生物科技報, Vol. 36, 2002
8.Stryer, L., “STRYER’S 生物化學 Fourth Edition,” 合記圖書出版社, Chapter 17, pp. 447-462, 1995.
9.Boyer, P. D., “The binding change mechanism for ATP synthase-Some probabilities,” Biochimica et Biophysica Acta, Vol. 1140, pp. 215-250, 1993.
10.李育嘉, “漫談布朗運動,” 數學傳播季刊, 中央研究院數學研究所發行, 第九卷, 第三期, 第三篇, 1963.
11.Wang, H. and Oster, G., “The Stokes efficiency for molecular motors and its applications,” Europhysics Letters, Vol. 57, No. 1, pp. 134-140, 2002.
12.Mogilner, A., Wang, H., Elston, T. and Oster, G., “Molecular motors: theory and experiment,” In: Computational Cell Biology, (eds. C. Fall, E. Marland, J. Wagner, J. Tyson). New York: Springer-Verlag, 2002.
13.Hunt, A. J., Gittes, F. and Howard, J., “The force exerted by a single kinesin molecule against a viscous load,” Biophysics Journal, Vol. 67, pp. 766-781, (1994)
14.Elston, T., Wang, H. and Oster, G., “Energy transduction in ATP synthase,” Nature Vol. 391, pp. 510-513, 1998.
15.R. Dean Astumian, “Fluctuation driven transport and models of molecular motors and pumps,” Europhysics Biophysics Journal, Vol. 27, pp. 474-489, 1998.
16.Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. and Itoh, H., “Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase,” Nature, Vol. 410, pp. 898-904, 2001.