簡易檢索 / 詳目顯示

研究生: 紀岳漢
Ji, Yue-Han
論文名稱: 四輪獨立驅動電動車扭矩分配控制系統
Torque Distribution Control System for Four-Wheel-Independent-Drive Electric Vehicles
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 136
中文關鍵詞: 四輪驅動電動車扭矩分配容錯控制滑移比硬體迴路模擬不均勻摩擦係數路面
外文關鍵詞: Electric vehicle, Torque distribution, Slip ratio, Motion control, Split friction region, Fault tolerant control, Hardware in the loop
相關次數: 點閱:115下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電動車相較於引擎車輛,有低汙染、快速且準確的扭力輸出、易於量測扭矩及獨立驅動的優點,基於上述優點,自動化車輛的控制系統相繼提出。根據智慧車輛分級,多層控制器的結合有助於自動駕駛的發展,且能應付多數行駛時的需求,為了提升駕駛的安全性及穩定性,許多研究針對中上層控制器設計改良,達到強健、穩定且有效的速度、橫擺力矩命令追蹤。為了應付加減速、上下坡或多變的路況,有研究提出下層扭矩分配控制器,解決在摩擦係數不均勻路面下行駛時的車輛扭矩分配,然而,多數的扭矩分配策略尚停留在命令較於簡單的情況,鮮少同時考慮車輛轉向時的扭矩分配狀況,且多數的扭矩分配控制器只驗證單一控制器的穩定,缺乏與其他控制器結合分析。
    基於上述問題,本論文提出下層扭矩分配策略,能應用於四輪獨立驅動電動車,此策略基於各輪的滑移比設計,且能應用於車輛轉向時,前輪轉向角與橫擺力矩的需求,提出的控制策略易與中上層控制器結合,成為整合型控制器,做為智慧車輛自動駕駛的銜接橋梁,驗證在不均勻摩擦係數道路下行駛的表現,此外,論文也考慮車輛行駛時馬達發生致動器錯誤時的解決方式,做為提出下層扭矩分配策略的延伸。本論文透過模擬驗證提出的下層控制器、整合型控制器、容錯下層控制器,另外也採用硬體迴路模擬,透過虛實整合的形式達到模擬及實驗的共同優點,測試提出的整合型控制器於駕駛實際操作時的表現。

    This thesis addresses a novel slip-ratio-based torque distribution strategy for electric vehicles (EVs) to avoid slippage when driving over a split friction surface. With the combination to an upper and middle controller, the desired driving force and yaw moment can be distributed to four driving wheels by utilizing the proposed lower controller. Stability analysis by using Lyapunov theorem is presented to show that the distribution method can equalize the slip ratios for the wheels on the same side of EVs. In addition, we also propose two torque distribution parameters for driving force KF and moment KM so that it is more flexible and easier to design a lower controller for EVs. This distribution method is able to equalize the slip
    ratios for wheels on the same side of EVs, so that the slipping motion can be avoided. Besides, this thesis considers the fault tolerant control as an extended
    example for proposed lower controller. In addition, the hardware in the loop (HIL) is used to verify the ability of use in real time situation. The HIL is an important
    connection between the pure simulation and real vehicle. The entire simulation is built on MATLAB, RT-lab and CarSim to construct the vehicle model and control
    implementations.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第二章車輛模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1 輪對地模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 車輛底盤模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 車輛模擬分析軟體CARSIM介紹. . . . . . . . . . . . . . . . . . . . 32 第三章車輛整合型控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 上層速度、橫擺角速度參考值及前輪轉向控制器. . . . . . . . . . 36 3.2 中層驅動力、橫擺力矩控制器. . . . . . . . . . . . . . . . . . . . . 40 3.3 下層扭矩分配控制器. . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 基於正向力之扭矩分配策略. . . . . . . . . . . . . . . . . . 46 3.3.2 基於滑移比之扭矩分配策略. . . . . . . . . . . . . . . . . . 49 3.3.3 基於滑移比之分配策略增益值討論. . . . . . . . . . . . . . 53 第四章致動器容錯控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 馬達錯誤型態. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 調整扭矩分配比之致動器容錯控制. . . . . . . . . . . . . . . . . . 58 4.3 多致動器錯誤的容錯. . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 驅動訊號飽和之容錯控制修正. . . . . . . . . . . . . . . . . . . . . 65 第五章模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1 扭矩分配控制之模擬. . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.1 下層控制器應用於區域滑移直線路面. . . . . . . . . . . . . 70 5.1.2 下層控制器應用於區域滑移彎曲路面. . . . . . . . . . . . . 74 5.1.3 下層控制器應用於連續滑移直線路面. . . . . . . . . . . . . 78 5.1.4 整合型控制器應用於區域滑移彎曲路面. . . . . . . . . . . . 82 5.2 致動器容錯控制之模擬. . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.1 容錯控制應用於單致動器故障. . . . . . . . . . . . . . . . . 87 5.2.2 容錯控制應用於多致動器故障. . . . . . . . . . . . . . . . . 92 5.2.3 容錯控制應用於單致動器故障且訊號飽和. . . . . . . . . . 96 第六章實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1 硬體迴路模擬(Hardware in the Loop)介紹. . . . . . . . . . . . . . 101 6.2 即時(Real-time)模擬. . . . . . . . . . . . . . . . . . . . . . . . . . 103 第七章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 A. Simulink架構圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    [1] S. Sakai, H. Sado, and Y. Hori. Motion Control in an Electric Vehicle with Four Independently Driven In-Wheel Motors. IEEE/ASME Transactions on Mechatronics, 4(1):9-16, Mar. 1999.
    [2] K. Maeda, H. Fujimoto, and Y. Hori. Four-Wheel Driving-Force Distribution Method for Instantaneous or Split Slippery Roads for Electric Vehicle with In-Wheel Motors. In 2012 12th IEEE International Workshop on Advanced Motion Control (AMC), pages 1-6, March 2012.
    [3] Y. Hori. Future Vehicle Driven by Electricity and Control-Research on Four-Wheel-Motored" UOT Electric March II". IEEE Transactions on Industrial Electronics, 51(5):954-962, Oct. 2004.
    [4] M. Nagai, M. Shino, and F. Gao. Study on Integrated Control of Active Front Steer Angle and Direct Yaw Moment. JSAE review, 23(3):309-315, 2002.
    [5] K. Nam, H. Fujimoto, and Y. Hori. Design of an Adaptive Sliding Mode Controller for Robust Yaw Stabilisation of In-Wheel-Motor-Driven Electric Vehicles. International Journal of Vehicle Design, 67(1):98-113, 2015.
    [6] H. Alipour, M. Sabahi, and M.B.B. Sharifian. Lateral Stabilization of a Four Wheel Independent Drive Electric Vehicle on Slippery Roads. Mechatronics, 30:275-285, Sep. 2015.
    [7] Hui Zhang and Junmin Wang. Vehicle Lateral Dynamics Control through AFS/DYC and Robust Gain-Scheduling Approach. IEEE Transactions on Vehicular Technology, 65(1):489-494, Jan. 2016.
    [8] R. Rajamani. Vehicle Dynamics and Control. Springer Science & Business Media, 2011.
    [9] Y. Hori, Y. Toyoda, and Y. Tsuruoka. Traction Control of Electric Vehicle: Basic Experimental Results Using the Test EV "UOT Electric March ". IEEE Transactions on Industry Applications, 34(5):1131-1138, Sep 1998.
    [10] B. Li, H. Du, and W. Li. Optimal Distribution Control of Non-Linear Tire Force of Electric Vehicles with In-Wheel Motors. Asian Journal of Control, 18(1):69-88, Jan. 2016.
    [11] Y. Wang, H. Fujimoto, and S. Hara. Driving Force Distribution and Control for Electric Vehicles with Four In-Wheel-Motors: A Case Study of Acceleration on Split-Friction Surfaces. IEEE Transactions on Industrial Electronics, 64(4):3380-3388, April 2017.
    [12] K. Maeda, H. Fujimoto, and Y. Hori. Four-Wheel Driving-Force Distribution Method for Instantaneous or Split Slippery Roads for Electric Vehicle. Automatika-Journal for Control, Measurement, Electronics, Computing and Communications, 54(1), 2013.
    [13] K. D. Young, V. I. Utkin, and U. Ozguner. A Control Engineer's Guide to Sliding Mode Control. In Proceedings of IEEE International Workshop on Variable Structure Systems, pages 1-14, Dec. 1996.
    [14] N. Mutoh, H. Akashi, K. Suzuki, and T. Takayanagi. Front and Rear Wheel Independent Drive Type Electric Vehicles (FRID EVs) with Outstanding Running Performance Suitable for Next-Generation Electric Vehicles. In 2012 IEEE International Electric Vehicle Conference, pages 1-8, March 2012.
    [15] National Highway Traffic Safety Administration et al. Preliminary Statement of Policy Concerning Automated Vehicles. Washington, DC, pages 1-14, 2013.
    [16] M. Short, M. Pont, and Q. Huang. Safety and Reliability of Distributed Embedded Systems. University of Leicester, Technical Report, 2004.
    [17] Y. Furukawa and M. Abe. Direct Yaw Moment Control with Estimating Side- Slip Angle by Using On-Board-Tire-Model. Proc. 4th Int. Symp. Advanced Vehicle Control, pages 431-436, 1998.
    [18] Z. Shuai, H. Zhang, J. Wang, J. Li, and M. Ouyang. Combined AFS and DYC Control of Four-Wheel-Independent-Drive Electric Vehicles over CAN Network with Time-Varying Delays. IEEE Transactions on Vehicular Technology, 63(2):591-602, Feb 2014.
    [19] BMW 台南汎德. 整合式主動轉向系統Active Steering Integral. June 2015. Retrieved from https://www.youtube.com/watch?v=dvgFZV6yOl8.
    [20] M. Chunting, L. Hui, and Z. Yi. Iterative Learning Control of Antilock Braking of Electric and Hybrid Vehicles. IEEE Transactions on Vehicular Technology, 54(2):486-494, March 2005.
    [21] D. Yin, S. Oh, and Y. Hori. A Novel Traction Control for EV Based on Maximum Transmissible Torque Estimation. IEEE Transactions on Industrial Electronics, 56(6):2086-2094, June 2009.
    [22] Y. Chen and J. Wang. Design and Evaluation on Electric Differentials for Overactuated Electric Ground Vehicles With Four Independent In-Wheel Motors. IEEE Transactions on Vehicular Technology, 61(4):1534-1542, May 2012.
    [23] W.-P. Chiang, D. Yin, M. Omae, and H. Shimizu. Integrated Slip-Based Torque Control of Antilock Braking System for In-Wheel Motor Electric Vehicle. IEEJ journal of industry applications, 3(4):318-327, 2014.
    [24] H. Fujimoto and S. Harada. Model-Based Range Extension Control System for Electric Vehicles With Front and Rear Driving-Braking Force Distributions. IEEE Transactions on Industrial Electronics, 62(5):3245-3254, May 2015.
    [25] H. Fujimoto and H. Sumiya. Range extension control system of electric vehicle based on optimal torque distribution and cornering resistance minimization. In IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, pages 3858-3863, Nov 2011.
    [26] X. Yuan and J. Wang. Torque distribution strategy for a front- and rear-wheel-driven electric vehicle. IEEE Transactions on Vehicular Technology, 61(8):3365-3374, Oct 2012.
    [27] K. Maeda, H. Fujimoto, and Y. Hori. Four-Wheel Driving-Force Distribution Method Based on Driving Stiffness and Slip Ratio Estimation for Electric Vehicle with In-Wheel Motors. In 2012 IEEE Vehicle Power and Propulsion Conference, pages 1286-1291, Oct 2012.
    [28] 龍景森. 淺談4WD. 財團法人車輛研究測試中心, 2013.
    [29] I. Hwang, S. Kim, Y. Kim, and C. E. Seah. A Survey of Fault Detection, Isolation, and Reconfiguration Methods. IEEE Transactions on Control Systems Technology, 18(3):636-653, May 2010.
    [30] S. Anwar and L. Chen. An Analytical Redundancy-Based Fault Detection and Isolation Algorithm for a Road-Wheel Control Subsystem in a Steer-By-Wire System. IEEE Transactions on Vehicular Technology, 56(5):2859-2869, 2007.
    [31] R. Wang and J. Wang. Passive Actuator Fault-Tolerant Control for a Class of Overactuated Nonlinear Systems and Applications to Electric Vehicles. IEEE Transactions on Vehicular Technology, 62(3):972-985, March 2013.
    [32] R. Wang and J. Wang. Fault-Tolerant Control With Active Fault Diagnosis for Four-Wheel Independently Driven Electric Ground Vehicles. IEEE Transactions on Vehicular Technology, 60(9):4276-4287, Nov 2011.
    [33] BMW 台南汎德. 智慧型可變四輪傳動系統中文xDrive. July 2015. Retrieved from https://www.youtube.com/watch?v=wbLLxcbYjuY.
    [34] T. D. Gillespie. Fundamentals of Vehicle Dynamics. Technical report, SAE Technical Paper, 1992.
    [35] N. Mutoh. Driving and Braking Torque Distribution Methods for Front- and Rear-Wheel-Independent Drive-Type Electric Vehicles on Roads With Low Friction Coefficient. IEEE Transactions on Industrial Electronics, 59(10):3919-3933, Oct 2012.
    [36] N. D. Smith. Understanding Parameters Inuencing Tire Modeling. Department of Mechanical Engineering, Colorado State University, 2004.
    [37] 龍景森. 抓地力與車輛動態關係. 財團法人車輛研究測試中心, 2012.
    [38] 龍景森. 汽車過彎的動態特性. 財團法人車輛研究測試中心, 2012.
    [39] 李明鴻、姚啟駿、徐錦衍、廖育昇、黃世杰、張光仁. 車輛翻覆即時警示系統之開發研究. 財團法人車輛研究測試中心,中國機械工程學會第二十九屆全國學術研討會論文集, 2012.
    [40] J.-J. E. Slotine and W. Li. Applied Nonlinear Control, volume 199. Prentice-Hall Englewood Cliffs, NJ, 1991.
    [41] Mechanical Simulation. Real-time Hardware in the Loop. May 2014. Retrieved from https://www.youtube.com/watch?v=IWrV23y2AIo.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE