| 研究生: |
陳柏穎 Chen, Po-Ying |
|---|---|
| 論文名稱: |
不排水環形剪力試驗探討關廟層砂岩之剪力行為 Shearing Behavior of Kuan-Miao Sandstone under Undrained Ring Shear Test |
| 指導教授: |
李德河
Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 滑動面液化 、超額孔隙水壓 、環形剪力試驗 、直接剪力試驗 、關廟層砂岩 、剪動帶 、軟弱砂岩 |
| 外文關鍵詞: | Shear zone, Excess pore water pressure, Ring shear test, Soft sandstone, Direct shear test, Kuan-Miao sandstone, Sliding-surface Liquefaction |
| 相關次數: | 點閱:294 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
台灣位處西太平洋亞熱帶氣候區,雨季常受梅雨及颱風所帶來豐沛雨量的影響,其降雨的形式多為暴雨型態。同時在我國西南部軟岩區內之地層多由砂、泥(頁)岩及其互層所構成,每當豪雨時常見區內邊坡發生崩壞的災害。
由於軟岩邊坡的崩壞多屬淺層、突發性及速度快之破壞,為防止災害發生,首先應深入瞭解軟岩邊坡的破壞機制。因此本研究以軟弱的關廟層砂岩為試驗材料,在實驗室內探討快速受剪破壞下的軟弱砂岩之力學行為。ㄧ般模擬大地材料在受剪之際無法及時排出超額孔隙水壓多以快速的直接剪力試驗為之,然而直接剪力試驗儀受到儀器剪動量之限制,且無法固定剪斷面積,因此本研究將採用能提供單一方向大剪斷位移及具有固定剪斷面積功能之環形剪力試驗儀進行相關試驗。
根據試驗結果,氣乾與飽和狀態下的關廟層砂岩在環形剪力試驗所得之剪力強度參數皆小於由直接剪力試驗所求得者。¬此外,砂岩試體在連續的剪位移下,最終進入一穩定狀態,在此狀態時的剪力阻抗、試體高度與超額孔隙水壓都不再隨著剪位移的增加而明顯變化。另ㄧ方面,關廟層砂岩在飽和不排水快剪的條件下,當剪力阻抗達到尖峰強度後,砂岩試體受剪區域所形成的剪動帶開始因剪縮而激發超額孔隙水壓並使剪力阻抗大幅下降,當剪力阻抗與有效正向應力降至極低時,剪動帶上將呈現滑動面液化(Sliding-surface Liquefaction)的現象。
Abstract
Taiwan is located at the West Pacific Ocean area, and its climate is classified to be subtropical zone. Plum rain and typhoons bring plentiful rainfall significantly during the raining season. In addition, the formations located at the southwestern Taiwan are usually consisted of the interlayers of sandstone and mudstone. Thus, the weather and geologic conditions are the natural reasons to cause frequent landslides during the raining season on the southwestern Taiwan.
Most soft rock slope failure in Taiwan can be classified to be shallow, burst type and high speed failures. Understanding the failure mechanism of the soft rock slope can be essential to the disaster prevention. In this study, the mechanical behavior of the Kuan-Miao Sandstone under the rapid shear failure is investigated. The pore pressure generated under a shear displacement was usually studied by quick direct shear test. However, the limited shear displacement and the changing sheared area of the direct shear test equipments influence the shear parameters when the tests undergo large displacements. Hence, the ring shear, enabled the large displacement of specified direction and kept constant shear area, test equipment was conducted in this study.
The testing results show that smaller shear parameters come from the ring shear test than the one of the direct shear tests. Besides, all the sandstone samples demonstrate a steady state under large shear displacements. All of the shear resistance, the height of specimen, and pore water pressure has insignificant correlations with the increasing shear displacement when the specimen met the steady state. On the other hand, under the saturated, undrained conditions, the decreasing shear zone thickness of Kuan-Miao Sandstone with the increasing shear displacement, generating pore pressure, and significantly decreasing of shear resistance were observed after the shear resistance reached its peak value. When the shear resistance and the effective normal stress reduce very low level, the shear zone shows the “Sliding –surface Liquefaction” phenomenon.
參考文獻
1.Anayi, J. T., Boyce, J. R., and Roger, C. D. F., “Modified Bromhead Ring Shear Apparatus,” Geotechnical Testing Journal, GTJODJ, Vol.12 NO.2 pp.171-173, 1989.
2.Anderson, W. F. and Hammoud, F., “Effect of Testing Procedure in Ring Shear Tests,” Geotechnical Testing Journal, GTJODJ, Vol.11, NO.3, pp.204-207, 1988.
3.Bell, F.G. and Culshaw M.G. “A survey of the geotechnical properties of some relatively weak Triassic sandstone,” The Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema, Rotterdam, ISBN 90 6191 1672, pp.139-148, 1993.
4.Bieniawski, Z. T. “Mechanics Design in Mining and Tunnrling,” Balkema, Rotterdam, 1984.
5.Bishop, A. W., Green, G. E., Garaga, V. K., Andresen, A., and Brown, J. D., “A New Ring Shear Apparatus and its Application to the Measurement of Residual Strength,” Geotechnique, Vol.21, NO.4, pp.273-328,1971.
6.Bjerrum, L. and Landva, A., “Direct Simple Shear Test on Norwegian Quick Clay,” Geotechnique, Vol.16, NO.1 pp.1-20, 1966.
7.Brown, E. T. (Ed.) “Rock Characterization,” Testing and Monitoring: ISRM Suggested Methods. Pergamon Press, Oxford, 1981.
8.Dyvik, R., Berre, T., Lacasse, S., and Raadim, B., “Comparison of Truly Undrained and Constant Volume Direct Simple Shear Tests,” Geotechnique, Vol.37, NO.1, pp.3-10, 1987.
9.Dobereuiner, L., De Freitas, M. H., “Geotechnial properties of weak sandstones,” Geotechnique, Vol.36, NO.1, pp.79-94, 1986.
10.Head, K. H., “Manual of Soil Laboratory Testing,” Vol.2: Permeability, Shear Strength and Compressibility Tests, 2ed, Pentech press, London, 1994.
11.Hight, D.W., Gens, A. and Sumes, M. J., “The Development of a New Hollow Cylinder Apparatus for Investigating the Effect of Principal Stress Rotation in Soils,” Geotechnique, Vol.33, No.4, pp.335-383, 1983.
12.Hungr, O. and Morgenster, N. R., “High velocity ring shear tests on sand,” Geotechnique, Vol.34, NO.3, pp.415-421, 1984.
13.Johnston, I. W., “Soft Rock Engineering,” Comprehensive Rock Engineering, ED. J. A. Hudson, Vol.1, pp.367-393, 1993.
14.Kamai, T., “Monitoring the process of ground failure in repeated landslides and associated stability assessments,” Engineering Geology, Vol.50, pp.71-84, 1998.
15.Okada, Y. and Sassa, K. and Fukuoka, H. “Liquefaction and the Steady State of Weathered Granitic Sands Obtained by Undrained Ring Shear Tests:A Fundamental Study of the Mechanism of Liquefaction Landslides,” Natural Disaster Science, Vol.22, pp75-85, 2000.
16.Okada, Y. and Sassa, K. and Fukuoka, H. “Shear Resistance of Sands under Undrained Condition and Potential for Rapid Flow Phenomena by Means of Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.45 B, 2002.
17.Oliveira, R. “Weak Rock Materials,” The Engineering Geology of Weak Rock, Cropps et al. (eds.), Balkma, Rotterdam, ISBN 90 6191 1672, pp.5-15,1993.
18.Poulos, J. “The steady state deformation,” ASCE Journal of Geotechnical Engineering Division, Vol.107, NO.GT5, pp.553-562, 1981.
19.Sadda, A. S. and Townsend, F. C., “State of the Art Laboratory Strength Testing of Soils,” Laboratory Shear Strength of Soil, ASTM STP740, R. N. Young and F. C. Townsend, Eds., Aerican Society for Testing and Materials, pp.7-77, 1981.
20.Sassa, K. “The mechanism of debris flows,” Proc. of XI Int’l Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol.3, pp.1173-1176, 1985.
21.Sassa, K. “Special lecture:Geotechnical model for the motion of landslides,” Proc. 5th ISL, “Landslides,” A.A. Balkema/Rotterdam, pp.37-55, 1988.
22.Sassa, K., H. Fukuoka, J. H. Lee & D. X. Zhang, “Measurement of the apparent friction angle during rapid loading by the high-speed high-stress ring shear apparatus-Interprettion of the relationship between landslide volume and the apparent friction during motion,” Landslides, Bell(ed.), Balkma, Rotterdam, ISBN 905410032X, pp.545-552, 1991.
23.Sassa, K. “Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring shear apparatus,” Landslides, Bell(ed.), Balkma, Rotterdam, ISBN 905410032X, pp.1919-1937, 1995.
24.Sassa, K. “Prediction of earthquake induced landslides,” Special Lecture, the 7th International Symposium on Landslides, Trondheim, 1996, In: Landslides, Rotterdam: Balkema, Vol.1, pp.115-132, 1996.
25.Sassa, K. and Fukuoka, H. “The Evolution of Sliding-Flow Structure under the Undrained Shearing in the Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.46 B, 2003.
26.Skempton, A. W., “Long-term stability of clay slopes,” Geotechnique, Vol.14, NO.2, pp.75-101, 1964.
27.Skemptonm A. W. and Petly, D. J., “The Strength along Structural Discontinuities in Stiff Clays,” Proc. Geotechnical Conf. Oslo2, pp.29-46, 1967a.
28.Skempton, A. W., “Residual strength of clays in landslides, folded strata and the laboratory,” Geotechnique, Vol.35, NO.1, pp.3-18, 1985.
29.Stark, T. D. and Vettel, J. J., “Bromhead Ring Shear Test Procedure,” Geotechnical Testing Journal, GTJODJ, Vol.15, NO.1, pp.24-32, 1992.
30.Stark, T. D. and Contreras, I. A., “Constant Volume Ring Shear Apparatus,” Geotechnical Testing Journal, GTJODJ, Vol.19, NO.1, pp.3-11, 1996.
31.Taylor, D. W., “A Direct Shear Tests With Drainage Control,” Symposium on Direct Shear Testing of Soils, ASTM STP 131, pp.63-74, 1952.
32.Tika, T. E. and Hutchinson, J. N., “Ring shear test on soil from the vaiont landslide slip surface,” Geotechnique, Vol.49, NO.1, pp.59-74, 1999.
33.Wafid, M., Sassa, K. and Fukuoka, H., “The Evolution of Sliding-Flow Structure under the Undrained Shearing in the Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.46 B, 2003.
34.Wang, G. and Sassa, K. “Ring-Shear Tests on Sliding Surface Liquefaction Behavior of Sandy Soils,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.41 B-1, 1998.
35.Wang, G. and Sassa, K. “Fluidzation Behavior of sands Based on Ring Shear Tests-Effects of Grain Size and Fine-Particle Content,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.43 B-1, 2000.
36.Wang, G. and Sassa, K. and Tada T. “Experimental Study no the Shearing Behavior of Saturated Sandy Silts Based on Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.44 B-1, 2001.
37.Wang, G. and Sassa, K. “Post-failure mobility of saturated sands in undrained load-controlled ring shear tests,” Canadian Geotechnical Journal, Vol.39, NO.4, pp.821-837, 2002.
38.Wang, G. and Sassa, K., “Pore-pressure generation and movement of rainfall-induced landslides:effects of grain size and fine-particle content,” Engineering Geology, Vol.69, pp.109-125, 2003.
39.Wang, G. and Sassa, K. and Fukuoka, H., “Downslope volume enlargement of a debris slide-debris flow in the 1999 Hiroshima, Japan, rainstorm,” Engineering Geology, Vol.69, pp.309-330, 2003.
40.李怡德,「軟弱砂岩弱化研究」,國立台灣大學土木工程研究所碩士論文,指導教授 黃燦輝、鄭富書,1996。
41.李程遠,「多功能剪力試驗系統之研發-扭剪部分」,國立交通大學土木工程研究所碩士論文,指導教授 潘以文、廖志中,2003。
42.吳建宏,「單軸應力狀態下木山層砂岩之破壞特性研究」,國立成功大學土木工程研究所碩士論文,指導教授 李德河、潘國樑,1998。。
43.杜振成,「影像處理方法運用於岩石節理面強度預估之初步研究」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2000。
44.吳俊賢,「利用環形剪力試驗儀探討南部軟岩殘餘強度特性」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2005。
45.耿文溥,「台南以東丘陵區之地質」,經濟部中央地質調查所彙刊,第一號,pp.1-31,1981。
46.卿建業,「人工軟弱岩石承載行為研究」,國立台灣大學土木工程研究所碩士論文,指導教授 鄭富書,1995。
47.國立成功大學公共工程研究中心,「龍崎鄉崎頂村兵仔舍地滑地地質調查報告」,台南縣龍崎鄉公所,1999。
48.黃惠儀,「軟弱砂岩之三軸試驗」,國立交通大學土木工程研究所碩士論文,指導教授 黃安斌,1999。
49.游有方,「關廟層砂岩之力學特性」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2003。
50.廖正傑,「南部軟岩於環形剪力試驗及力學特性之研究」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2004。
51.鄭富書、李怡德及黃燦輝,「軟弱砂岩遇水軟化行為試驗研究」,1996岩盤工程論文集,國立台灣大學,台北,pp.373-382,1996。
52.劉晉材,「軟岩中空環剪儀之研發」,國立交通大學土木工程研究所碩士論文,指導教授 潘以文,2004。
53.嚴國禎,「錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究」,國立台灣大學土木工程研究所碩士論文,指導教授 洪如江、林美玲,1999。
54.經濟部中央地質調查所,「龍崎兵仔舍滑崩災害」,台灣山崩災害專輯,pp.125-131,1999。