| 研究生: |
林致廷 Lin, Jr-Ting |
|---|---|
| 論文名稱: |
多孔性氧化鋅奈米線陣列之抗反射與可見光感測性質 Visible Light Photodetection and Antireflection Property of Porous ZnO Nanowire Arrays |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 多孔性氧化鋅奈米線 、抗反射 、可見光感測 |
| 外文關鍵詞: | Porous ZnO nanowires, Antireflection, Visible light photodetection, photodetector |
| 相關次數: | 點閱:125 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討多孔性氧化鋅奈米線陣列對於可見光之感測性質以及材料本身抗反射能力。多孔性氧化鋅奈米線製程主要分兩個步驟,首先氧化鋅奈米線製程主要是利用水熱法(Hydrothermal method)成長,接著再以高溫爐管氫氣退火,以退火時間當作實驗變因,使氧化鋅奈米線表面產生孔洞,利用掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)觀察退火時間對於奈米線表面孔隙率、直徑、長度等影響,接著探討孔洞形成的機制;在光學分析上,以紫外光/可見光分光譜儀(UV-vis Spectrophotometer)來量測不同表面孔隙率氧化鋅奈米線之光學性質,由量測結果可知當表面孔隙率越高時,其吸收度會越高,且吸收範圍延伸至可見光的波段,此外穿透率以及反射率會因此降低,其中反射率最低可以低達5%以下,故我們可稱多孔性氧化鋅具有抗反射效果,其造成反射率降低的原因為多孔性氧化鋅的結構具有漸變式折射率的特性,接著以陰極發光光譜儀(Cathodoluminescsnce, CL)來觀察材料之發光特性,由結果得知,當氫氣退火時間增加時,其缺陷發光的強度會增加,可以推知氫氣退火會使材料內部缺陷濃度上升,最後以不同波長之可見光來進行多孔性氧化鋅奈米線的可見光感測,由結果可以推論出兩種貢獻光電流的機制,未處理氧化鋅光電流的貢獻主要來自氣體吸脫附,可見光能量要足夠打斷氧與氧化鋅鍵結才能夠使氧氣脫附進而貢獻光電流;而多孔性氧化鋅因在氫氣退火時會使表面的氧氣脫附以及表面鈍化,故光電流的貢獻主要來自缺陷能階躍遷,在長波長可見光(如黃光以及紅光)感測中,未處理氧化鋅幾乎沒有光響應,而多孔性氧化鋅的依然維持一定程度的光響應,多孔性氧化鋅在未來可見光感測的領域有很大的潛力。
This study investigates visible light photodetection properties of porous ZnO nanowire arrays (PZNA) synthesized by hydrothermal method followed by annealing in hydrogen/argon mixed atmosphere. Scanning electron microscopy images clearly show that the surface porosity increases as increasing annealing time, which is accompanied by the luster change from white to dark-brown. From ultraviolet-visible spectrometry analysis, we learn that the absorbance of the PZNA in the visible light region increases while the reflectance decreases as increasing annealing time. The pores of the PZNA are created by hydrogen etching from top with a gradient distribution, resulting in graded refractive index for the observed antireflection effect. The CL spectra suggest more oxygen defects in PZNA than as-grwon ZnO nanowires. With the above properties, we first demonstrate the great photodetection performance in visible light region from blue to red can be achieved by using the PZNA.
[1] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, Nano Letters 2007, 7, 1003.
[2] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, Journal of Crystal Growth 2001, 225, 110.
[3] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L. Wang, Applied Physics Letters 2009, 94, 191103.
[4] Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, Journal of Electronic Materials 2000, 29, 69.
[5] S. K. Gupta, A. Joshi, M. Kaur, J Chem Sci 2010, 122, 57.
[6] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Applied Physics Letters 2004, 84, 3654.
[7] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, L. Vayssieres, Nanotechnology 2006, 17, 4995.
[8] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Nature Nanotechnology 2010, 5, 366.
[9] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z. L. Wang, Nano Letters 2006, 6, 2768.
[10] S. M. Michael H. Huang, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 2001, 292, 1897.
[11] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Applied Physics Letters 1998, 72, 3270.
[12] S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Nature Nanotechnology 2011, 6, 506.
[13] U. Özgür, Y. I.Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan,V. Avrutin, S. J. Cho, H.Morkoç, Journal of Applied Physics 2005, 98, 041301.
[14] Z. L. Wang, Journal of Physics: Condensed Matter 2004, 16, R829.
[15] J. G. L. Zhiyong Fan, Journal of Nanoscience and Nanotechnology 2005, 5, 1561.
[16] Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K.-t. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Journal of Crystal Growth 1997, 181, 165.
[17] D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao, Journal of Crystal Growth 1998, 184–185, 605.
[18] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Applied Physics Letters 2003, 82, 1117.
[19] Kazunori Minegishi, Yasushi Koiwai, Yukinobu Kikuchi, Koji Yano, Masanobu Kasuga, Azuma Shimizu, Japanese Journal of Applied Physics 1997, 36, L1453.
[20] L. Vayssieres, Advanced Materials 2003, 15, 464.
[21] K. K. Lionel Vayssieres, Sten-Eric Lindquist, Anders Hagfeldt, Journal of Physical Chemistry B,2001, 105, 3350.
[22] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 2005, 178, 1864.
[23] S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, K. S. Lim, Applied Physics Letters 1997, 70, 3516.
[24] G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragalà, M. Losurdo, Advanced Materials 2009, 21, 1700.
[25] T. M. Greene, W. Brown, L. Andrews, A. J. Downs, G. V. Chertihin, N. Runeberg, P. Pyykko, The Journal of Physical Chemistry 1995, 99, 7925.
[26] G. Kresse, O. Dulub, U. Diebold, Physical Review B 2003, 68, 245409.
[27] J. Ghatak, J. H. Huang, P. C. Huang, Y. I. Shih, C. P. Liu, Journal of the Electrochemical Society 2012, 159, H239.
[28] J. S. Rayleigh, Proc. London Math. Soc. 1880, 11, 51.
[29] W. H. Southwell, Opt. Lett 1983, 8, 584.
[30] J. A. Dobrowolski, Poitras, D., Ma, P., Vakil, H. Acree, M., Appl. Opt 2002, 41, 3075.
[31] D. D. Poitras, J. A., Appl. Opt 2004, 43, 1286.
[32] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, LiuW, J. A. Smart, Nat Photon 2007, 1, 176.
[33] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Nano Letters 2009, 9, 279.
[34] Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, Nano Letters 2010, 10, 3823.
[35] Mollow, E. Proceedings of the Photoconductivity Conference,Breckenridge, R.G., Ed.; Wiley,
New York, NY, USA 1954, 509.
[36] H. Fabricius, T. Skettrup, P. Bisgaard, Appl. Opt. 1986, 25, 2764.
[37] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, J.-J. Delaunay, Applied Physics Letters 2009, 94, 023110.
[38] Q. H. Li, Q. Wan, Y. X. Liang, T. H. Wang, Applied Physics Letters 2004, 84, 4556.
[39] Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li, Applied Physics Letters 2008, 93, 163501.
[40] Z. Zhan, L. Zheng, Y. Pan, G. Sun, L. Li, J. Mater. Chem. 2012, 22, 2589.
[41] L. Zhu, C. Li, Y. Li, C. Feng, F. Li, D. Zhang, Z. Chen, S. Wen, S. Ruan, J. Mater. Chem. C 2015, 3, 2231.
[42] K. Govender, D. S. Boyle, P. B. Kenway, P. O'Brien, J. Mater. Chem. 2004, 14, 2575.
[43] L. Spanhel, Journal of Sol-Gel Science and Technology 2006, 39, 7.
[44] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, ACS Applied Materials & Interfaces 2012, 4, 4024.
[45] M.-J. Lee, J. Lim, J. Bang, W. Lee, J.-M. Myoung, Applied Surface Science 2008, 255, 3195.
[46] W.-W. Zhong, F.-M. Liu, L.-G. Cai, D. Peng, C.-C. Zhou, L.-G. Zeng, X.-Q. Liu, Y. Li, Journal of Alloys and Compounds 2011, 509, 3847.
[47] M. Breedon, M. J. Spencer, I. Yarovsky, Journal of physics. Condensed Matter : an Institute of Physics journal 2009, 21, 144208.