簡易檢索 / 詳目顯示

研究生: 張桄華
Chang, Kuang-Hua
論文名稱: 使用田口最佳化方法分析深溝槽矽槽蝕刻解決深溝槽中的針狀缺陷
Optimize Needle Defect of Deep Trench Isolation
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 57
中文關鍵詞: 深溝槽絕緣BCDSYNDION快速轉換製程RAP針狀缺陷田口分析
外文關鍵詞: Deep Trench Isolation, BCD, SYNDION, Rapid Alternate Process, RAP, needle defect, Taguchi Analysis
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在BCD 的元件中,因其整合二極體、CMOS、DMOS三種不同功能的元件,各個元件間能有良好的隔離是 BCD 製程很重要的地方,因此深溝槽製程的控制是非常重要的,本研究發現在製程當中的深溝槽針狀缺陷,是來自於使用Lam SYNDION®進行深溝槽蝕刻,快速轉換製程(RAP) 循環的蝕刻步驟與沉積步驟失衡,使得蝕刻步驟無法將沉積步驟的沉積物去除,殘留點狀殘留物,在RAP 循環後期而形成針狀缺陷,本研究利用L18田口直交表尋找針狀缺陷的關鍵因子,再利用L9 直交表確認製程的穩定度,本研究發現增加沉積步驟的SF6 流量能夠有效的減少蝕刻中的針狀缺陷,並且可以利用減少蝕刻步驟的 SF6流量以及蝕刻步驟的時間來控制深溝槽蝕刻輪廓,使得深溝槽的關鍵尺寸仍能符合客戶需求,實驗程式在量產產品中對針狀缺陷的改善卓越。

    BCD Process in semiconductor integrates three different function components of bipolar, CMOS, DMOS and it’s very important to have a good isolation between these components. Therefore, the process control of deep trench isolation (DTI) is especially important in BCD process. This study found the reason why needle defect happen in DTI process is the unbalancing of etching phase and deposition phase in Rapid Alternate Process (RAP) cycle in Lam SYNDION® etching tool. The polymer deposition in deposition phase can’t remove after etching phase induce the tiny residue and became needle defect in following RAP cycle. This study used L18 Taguchi orthogonal table to find key factor of needle defect, and then use the L9 orthogonal table to do window check for process. This study found adding SF6 flow in deposition phase can improve needle defect in DTI process and using reduce SF6 flow and process time in etch phase can control the DTI profile. After these tuning of etching process can control DTI profile critical dimension meet customer target and reduce needle defect in the same time. The production test of this recipe also had large improve in needle defect.

    表目錄 x 圖目錄 xi 一. 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構 5 1.4 文獻回顧 6 二. 深溝槽蝕刻研究與針狀缺陷介紹 9 2.1 半導體製造流程的製造原理概述與流程簡介 9 2.2 深溝槽隔離簡介 12 2.3 深溝槽製程簡介 15 2.4 電漿蝕刻機台簡介 18 三. 田口法與實驗儀器介紹 26 3.1 實驗設備 26 3.1.1 DRIE 深反應離子蝕刻機台 26 3.1.2 TEM 穿透式電子顯微鏡 27 3.1.3 KLA光學檢測儀 29 3.2 田口法基本介紹 30 3.2.1 實驗設計法 31 3.2.2 混合水準直交表 32 3.2.3 S/N比與品質特性 34 四. 實驗結果與討論 36 4.1 實驗結果 37 4.1.1 針狀缺陷形成機制 37 4.1.2 直交表參數篩選 39 4.2 驗證 43 4.2.1 L18 RAP參數分析 44 4.2.2 L18 S/N比分析 46 4.2.3 L18 Bottom critical Dimension 望目特性結果分析 46 4.2.4 L9 因子選擇 47 4.2.5 L9 參數分析 48 4.2.6 L9 S/N比分析 49 4.2.7 最佳化結果驗證 50 4.3 良率分析 51 五. 結論與建議 53 5.1 結論 53 5.2 建議 54 參考文獻 55 縮寫名詞解釋 57

    [1] S. Hong. (2018). 藏在ST最新BCD節點的製程奧秘 [Online]. Available: https://www.eettaiwan.com/news/article/20180509NT31-ST-Latest-BCD-Node-Examined.
    [2] W. Hartner, A. Meiser, H. Gruber, D. Bonart, and T. Gross, "Semiconductor structure and method," ed: Google Patents, 2008.
    [3] Q. Xu, A. Paterson, J. McChesney, R. Dover, Y. Yamaguchi, and A. Eppler, "Enhanced etch process for TSV & deep silicon etch," in 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2015: IEEE, pp. 426-428.
    [4] M. N. Chil et al., "Advanced 300mm 130nm BCD technology from 5V to 85V with Deep-Trench Isolation," in 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016: IEEE, pp. 403-406.
    [5] R. Rung, H. Momose, and Y. Nagakubo, "Deep trench isolated CMOS devices," in 1982 International Electron Devices Meeting, 1982: IEEE, pp. 237-240.
    [6] L. Qian, J. Wang, Z. Yang, and G. Yan, "Fabrication of ultra-deep high-aspect-ratio isolation trench without void and its application," in 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, 2010: IEEE, pp. 654-657.
    [7] F. Laermer and A. Schilp, "Method of anisotropic etching of silicon," ed: Google Patents, 2003.
    [8] Z. Ouyang, D. N. Ruzic, M. Kiehlbauch, A. Schrinsky, and K. Torek, "Etching mechanism of the single-step through-silicon-via dry etch using SF6/C4F8 chemistry," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 4, p. 041306, 2014.
    [9] E. Ng, C.-F. Chiang, Y. Yang, V. Hong, C. Ahn, and T. Kenny, "Ultra-high aspect ratio trenches in single crystal silicon with epitaxial gap tuning," in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013: IEEE, pp. 182-185.
    [10] Z. Wang, F. Jiang, and W. Zhang, "Si dry etching for TSV formation and backside reveal," in Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), 2014: IEEE, pp. 1-3.
    [11] H. Kitahara et al., "A deep trench isolation integrated in a 0.13 um BiCD process technology for analog power ICs," in 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2009: IEEE, pp. 206-209.
    [12] IC快訊. (2015). 晶圓製備–絕緣體上矽(SOI) [Online]. Available: https://kknews.cc/zh-tw/tech/agnqjj.html.
    [13] 胡. 羅國軒, 洪崇祐,黃宗義,龔正, "利用介電質調變之超高壓橫向式金氧半電晶體," 國家奈米元件實驗室奈米通訊 ; 17卷4期, 2010.
    [14] D. Shum et al., "Highly scalable flash memory with novel deep trench isolation embedded into highperformance cmos for the 90nm node & beyond," in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., 2005: IEEE, pp. 344-347.
    [15] 朱俊霖, "奈米通訊 , 22卷 No.4/電漿與蝕刻."
    [16] R. W. Shouliang Lai, David Purser, Mike DeVre, Dave Johnson, David Lishan. ADVANCES in DEEP SILICON ETCHING [Online]. Available: http://www.plasma-therm.com/pdfs/papers/4.%20Advances%20in%20Deep%20Silicon%20Etching.pdf.
    [17] 朱柏豪, "奈米通訊 24 卷/什麼是蝕刻."
    [18] Lam® Research 官方網站. SYNDION 機台簡介 [Online]. Available: https://www.lamresearch.com/zh-hant/product/syndion-product-family/.
    [19] 閎康. TEM的應用 [Online]. Available: http://www.ma-tek.com/zh-tw/services/index/material/Pro_20.
    [20] Big-Bit. (2019). 自动驾驶已在来路上,汽车芯片“零缺陷”的根基在哪里? [Online]. Available: http://www.coobey.com/news/309624.html.
    [21] 李輝煌, 田口方法:品質設計的原理與實務. Taiwan: 高立圖書有限公司出版, 2011.
    [22] D. Zhang et al., "Process Development and Optimization for 3$mu ext {m} $ High Aspect Ratio Via-Middle Through-Silicon Vias at Wafer Level," IEEE Transactions on Semiconductor Manufacturing, vol. 28, no. 4, pp. 454-460, 2015.
    [23] K. Gopalakrishnan, A. Peddaiahgari, D. Smith, D. Zhang, and L. England, "Process development and optimization for high-aspect ratio through-silicon via (TSV) etch," in 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2016: IEEE, pp. 460-465.

    無法下載圖示 校內:2025-01-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE