| 研究生: |
黃柏維 Huang, Po-Wei |
|---|---|
| 論文名稱: |
基於可攜式頭部移動感測裝置之睡眠分期分析系統 A Sleep Stage Analysis System based on a portable head movement sensing device |
| 指導教授: |
侯廷偉
Hou, Ting-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 睡眠 、睡眠障礙 、睡眠分期 、壓力感測器 、簡易移動平均 |
| 外文關鍵詞: | Sleep, Sleep Disorders, Sleep Staging, Pressure Sensors, Simple Moving Average |
| 相關次數: | 點閱:95 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
睡眠,對於人類來說是一天當中很重要的一件事情,只有充分且適當的睡眠才能讓身體獲得適當的休息並補充再活動的能量。不過越來越多的人因工作壓力或是健康狀況異常等因素漸漸的影響到自我的睡眠品質,更嚴重者將會造成睡眠障礙。
一直以來針對睡眠品質的評估,最常用的是藉由多項生理訊號儀器(PSG)量測出的結果來輔助進行,不過這類方法延伸出的是費用高且要有專業人員從旁協助執行的缺點,所以對於居家的睡眠品質改善並不適合。因此本論文提出一種可讓使用者在熟悉的環境下進行睡眠監測的分析系統,並期望透過系統量測出的訊號來協助睡眠品質的評估。
基於睡眠的特徵當中身體活動量的多寡與可能的長時間靜止是一種可用來評估睡眠狀態的方式。故本論文將開發一種非接觸式的可攜式頭部移動感測裝置來協助睡眠品質之分析,系統以內建壓力感測器所製作的頭部活動感測織布來收集受測者睡眠時的頭部活動訊號,並利用各時點壓力值斜率的簡易移動平均(SMA)搭配所設計的睡眠分期判斷規則來進行各睡眠階段的辨別,讓使用者或是醫生可以藉由本論文所開發的睡眠分期分析程式來了解自我或受測者的睡眠分佈狀況。
本系統中所提供的睡眠品質指標與評分只是要讓受測者了解自我睡眠品質的好壞程度,並不是要取代醫學標準的多項生理監測儀器(PSG)。期望透過這樣的系統能夠達成初期的建議,當受測者睡眠有出現一定程度的睡眠障礙趨勢,再到醫院做進一步的完整分析治療。
關鍵詞:睡眠、睡眠障礙、睡眠分期、壓力感測器、簡易移動平均
Sleep is a very important part of the day for humans. Only adequate and proper sleep can give the body proper rest and supplement the energy of reactivation. However, more and more people are gradually affecting their own sleep quality due to work stress or abnormal health conditions. More serious will cause sleep disorders
The evaluation of sleep quality has been performed most often through the measurement of results from PSG. However, this type of method extends to the disadvantage of high costs and the need for professionals to assist in their implementation. So, it's not suitable for improving the quality of sleep at home. Therefore, this paper proposes an analysis system that allows users to perform sleep monitoring in a familiar environment and we hope to assist in the evaluation of sleep quality through systematically measured signals.
The amount of physical activity and possible prolonged quiescence in sleep-based features is a way to evaluate sleep status. Therefore, this paper will develop a non-contact portable head movement sensing device to assist in the analysis of sleep quality. The system collects the head activity signal of the subject during sleep with a head activity sensing woven cloth made by a built-in pressure sensor. And use the simple moving average (SMA) of the slope of pressure value at each time point to match the designed sleep stage judgment rules to identify each sleep stage. The user or doctor can use the sleep stage analysis program developed in this paper to understand the distribution of sleep of the subject.
The sleep quality indexes and scores provided in this system are only for the subjects to understand their sleep quality and are not intended to replace the medical standard of PSG. It is hoped that the initial recommendations can be reached through such a system. When subjects have a certain degree of sleep disturbance, they go to the hospital for further analysis.
Keywords: Sleep, Sleep Disorders, Sleep Staging, Pressure Sensors, Simple Moving Average
繿[1] L. G. Olson, M. T. King, M. J. Hensley, and N. A. Saunders, “A community study of snoring and sleep-disordered breathing: health outcomes”, American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 2, pp. 717-720, 1995.
[2] T. Young, L. Evans, L. Finn, and M. Palta, “Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women”, Sleep, vol. 20, no. 9, pp. 705-706, 1997.
[3] J. Teran-Santos, A. Jimenez-Gomez, and J. Cordero-Guevara, “The association between sleep apnea and risk of traffic accidents”, The New England Journal of Medicine, vol. 340, no. 11, pp. 847-851, 1999.
[4] A. Malhotra and D. P. White, “Obstructive sleep apnoea” , The Lancet, vol. 360, no. 9328, pp. 237-245, 2002.
[5] A. Rechtschaffen and A. Kales, “A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stage of Human Subjects”, Washington, DC: US Government Printing Office, 1968.
[6] 刉剝缩(2011)缚睡眠ᄫ學瘄發展, 睡眠ᄫ學学剙, pp.3-5, ź北缚合ਘ圖晸兺版社.
[7] Wiki, “睡眠”, https://zh.wikipedia.org/wiki/%E7%9D%A1%E7%9C%A0, Retrieved on May 2018.
[8] 帷健ᙜ, ᙳ偉缚睡眠ଓ大Ŧ挒歒, 祑學期刊မḼਪ. http://blog.eroach.net/?p=934, Retrieved on May 2018.
[9] 東元紜合ᄫᙢ, 楊ጚ嬜:ᄫ師缌我整晚ၽ在做夢 根本氒睡缁http://w3.tyh.com.tw/Clinical_ser/article/24/20171220_24_001.html, Retrieved on June 2018.
[10] ᄭ 智 መ, 睡眠ᘜ礙ȇ睡眠估, 元智大學礴为稛祉祑戀研發中彃, http://designer.mech.yzu.edu.tw/article/articles/technical/file/(2002-07-20)%20%BA%CE%AFv%BB%D9%C3%AA%BBP%BA%CE%AFv%B5%FB%A6%F4.pdf, 2002.
[11] D. W. Wheatley, N. Berme, and M. W. Ferguson-Pell, “A low-profile load transducer for monitoring movement”, Experimental Mechanics, vol. 20, no. 6, pp.19-20, 1980.
[12] J. C. Barbenel, M. W. Ferguson-Pell, and A. Q. Beale, “Monitoring the mobility of patients in bed”, Medical and Biological Engineering and Computing, vol. 23, no. 5, pp. 466-468, 1985.
[13] J. M. Choi, B. H. Choi, J. W. Seo, R. H. Sohn, M. S. Ryu, W. Yi, K. S. Park, “A System for Ubiquitous Health Monitoring in the Bedroom via a Bluetooth Network and Wireless LAN”, Engineering in Medicine and Biology Society, Conference Proceedings. 26th Annual International Conference of the IEEE, vol. 2, pp. 3362-3365, 2004.
[14] A. M. Adami, T. L. Hayes, M. Pavel, C. M. Singer, “Detection and classification of movements in bed using load cells”, IEEE 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp.589-592, 2005.
[15] K. Kayed, P. E. Hesla, and O. Rosjo, “The actioculographic monitor of sleep”, Sleep, vol. 2, no. 2, pp.253-260, 1979.
[16] M. Xiao, H. Yan, J. Song, Y. Yang, and X. Yang. “Sleep stages classification based on heart rate variability and random forest”, Biomedical Signal Processing and Control, vol. 8, no. 6, pp. 624–633, 2013.
[17] D. A. Kristo, A. H. Eliasson, R. K. Poropatich, C. M. Netzer, J. P. Bradley, D. I. Loube, and N. C. Netzer, “Telemedicine in the Sleep Laboratory: Feasibility and Economic Advantages of Polysomnograms Transferred Online”, Telemedicine and e-Health, vol. 7, no. 3, pp. 219-224, 2001.
[18] S. Doi, I. Nagai, and T. Sakuma, “A decision method for sleeping-states from body movement using neural network”, the Transactions of the Institute of Electrical Engineers of Japan, vol. 114-C, no. 11, pp. 1160-1165, 1994.
[19] F. Ebrahimi, M. Mikaeili, E. Estrada, and H. Nazeran., “Automatic sleep stage classification based on eeg signals by using neural networks and wavelet packet coefficients”, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1151–1154, 2008.
[20] Y. L. Hsu, Y. T. Yang, J. S. Wang, and C. Y. Hsu, “Automatic sleep stage recurrent neural classifier using energy features of EEG signals”, Neurocomputing, vol. 104, pp. 105-114, 2013.
[21] J. L. Rodrigues-Sotelo, A.Osorio-Forero, and A. R. et al. “Automatic sleep stages classifcation using eeg entropy features and unsupervised pattern analysis techniques”, Entropy, pp. 6573–6589, 2014.
[22] ၭų恩, ᔋ發一套坺攼售ယၓ睡眠生理ਊٟ瘄Ū剕睡眠判类統ȇ其在睡眠琰堃挧制上之慉用, 國穋成刟大學ేਊ嵥程學类, 博填攇, 2013.
[23] A. R. Hassan, S. K. Bashar, and M. I. H. Bhuiyan, “Automatic classification of sleep stages from single-channel electroencephalogram”, IEEE India Conference (INDICON), 2015.
[24] 張尚浵, 慉用攼睡眠ᘎ欵判之低刟 ٕ理器ਭਈ, 國穋ź灣大學ᙻ子嵥程學研究所, 砩填攇, 2017.
[25] 百带百祑, “小米手琰”, https://baike.baidu.com/item/%E5%B0%8F%E7%B1%B3%E6%89%8B%E7%8E%AF, Retrieved on June 2018.
[26] SleepAce, “丫睡ሕ扣”, http://www.sleepace.com/cn/product/sleepdot.html#section-1, Retrieved on June 2018.
[27] 百带百祑, “ݸ牛睡眠”, https://baike.baidu.com/item/%E8%9C%97%E7%89%9B%E7%9D%A1%E7%9C%A0, Retrieved on June 2018.
[28] APP Store, “ݸ牛睡眠”, https://itunes.apple.com/cn/app/id1025313530, Retrieved on June 2018.
[29] Interlink Electronics, “Force Sensing Resistor Integration Guide and Evaluation Parts Catalog”, https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf, Retrieved on June 2018.
[30] Arduino, “ARDUINO UNO REV3”, https://store.arduino.cc/arduino-uno-rev3/, Retrieved on May 2018.
[31] EL Gammal Electronics, “Sensor Shield V5.0 ForArduino”, http://elgammalelectronics.com/Products/Download/f18faaa0-8a40-493b-b754-8b33a7a06b59?Name=XX30-Arduino%20Sensor%20Shield%20V5.0%20sensor%20expansion%20board%20electronic%20building%20blocks%20new-DATASHEET, Retrieved on June 2018.
[32] Wiki, “Arduino SD card Module”, http://www.geeetech.com/wiki/index.php/Arduino_SD_card_Module, Retrieved on June 2018.
[33] BugWorkShop-甲ݲ嵥作嬤, “DS3231 RTC IC之紹”, http://bugworkshop.blogspot.com/2018/02/diy-esp8266ds3231-rtc-ic.html, Retrieved on June 2018.
[34] Wikipedia, “Visual Basic .NET”, https://zh.wikipedia.org/wiki/Visual_Basic_.NET, Retrieved on June 2018.
[35] Wikipedia, “Delphi”, https://zh.wikipedia.org/wiki/Delphi, Retrieved on June 2018.
[36] 孫攇ɯ, 一種坺攼ᠸၨ穿戴式慣性感測置之即時ᠸၨ剕作༨祼改汕ਭਈȇ学作, 國穋成刟大學嵥程祑學类, 砩填攇, 2015.
[37] Colin Mercer, “Data Smoothing: RC Filtering And Exponential Averaging”, http://blog.prosig.com/2003/04/28/data-smoothing-rc-filtering-and-exponential-averaging/, Retrieved on June 2018.
[38] Wikipedia, “Low-pass filter”, https://en.wikipedia.org/wiki/Low-pass_filter, Retrieved on June 2018.
[39] MBALib, “一次指数平礄汕”, http://wiki.mbalib.com/wiki/一次指数平礄汕, Retrieved on June 2018.
[40] Gavin Kistner, “Frame Rate-Independent Low-Pass Filter”, http://phrogz.net/js/framerate-independent-low-pass-filter.html, Retrieved on June 2018.
[41] “Low-pass filter”, https://helpful.knobs-dials.com/index.php/Low-pass_filter, Retrieved on June 2018.
[42] G. Jean-Louis, H. von Gizycki, F. Zizi, J. Fookson, A. Spielman, and J. Nunes, “Determination of Sleep and Wakefulness With the Actigraph Data Analysis Software(ADAS)”, Sleep, vol. 19, no. 9, pp. 739-743, 1996.
[43] R. B. Berry, R. Brooks, and C. E. Gamaldo, The AASM Manual for the Scoring of Sleep and Associated Events, Retrieved on June 2018.