| 研究生: |
周姵萱 Chou, Pei-Hsuan |
|---|---|
| 論文名稱: |
探討新生分離作用對於長期增益現象誘發機制改變之影響 The effect of neonatal maternal separation on the developmental switch for long-term potentiation induction |
| 指導教授: |
許桂森
Hsu, Kuei-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 新生分離模式 、長期增益現象 、促腎上腺皮質激素釋放因子 、發育 、海馬迴 |
| 外文關鍵詞: | development, long-term potentiation (LTP), corticotrophin-releasing factor (CRF), hippocampus, neonatal separation, Ca2+/calmodulin-dependent protein kinase II |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於壓力的定義,目前並沒有一致性的認知。一般認為會嚴重地影響個體生理及心理恆定性的物件或情況,都能定義為「壓力」,其影響的程度可從較輕度的焦慮行為,到一些經歷重度創傷所造成的身心失調等現象。而當個體遭遇到壓力的時候,一些生理的調節機制可以產生立即的急性反應來適應環境,以維持個體的生存;然而過度或長期的表現此反應機制,反而會對於正常的生理機能造成不良的影響。而在過去許多的動物實驗及臨床的觀察研究中,都發現到壓力對於中樞系統認知功能的表現有著很大的影響,且其影響的程度隨著壓力的強度及個體的差異有著兩極化(biphasic)的現象;例如短暫且輕度的壓力會促進記憶的形成,但是過度及長期的壓力反而會造成神經元的損傷,而破壞了學習記憶的表現。然而,對於壓力如何影響突觸塑性其中的細胞和分子機制依然不明。最近的研究指出在海馬迴CA1區域的長期增益現象(Longterm potentiation;LTP)其機制會隨著發育過程而轉變,但究竟是哪些生理因子參予這個發育的轉變仍然沒有定論。我們的研究發現輕度的壓力模式(將新生幼鼠和母鼠分離)會影響海馬迴 CA1區域長期增益現象誘發機制的改變,其主要係透過活化與壓力反應有關的促皮質素釋放因子(corticotrophin-releasing factor,CRF)的系統,進而加速海馬迴CA1區域的長期增益現象由cyclic AMP-dependent protein kinase (PKA)依賴性型式轉變成Ca2+/calmodulin-dependent protein kinase II (CaMKII)的依賴性的型式。此外藉由反轉錄酶-聚合反應(reverse transcriptase-polymerase chain reaction,RT-PCR)的結果也發現,將新生幼鼠和母鼠分離的壓力似乎是藉由增加CaMKII基因的轉錄而進行調控。此外我們也利用離體的海馬迴神經細胞組織培養証實CRF的確可以增加CaMKII的表現,此一作用會被不具選擇性的CRF受體拮抗劑astressin及CRF第一型受體的專一性拮抗劑NBI27914及PKA的拮抗劑KT5720所阻斷,但不會受CRF第二型受體的專一性拮抗劑K41498及protein kinase C(PKC)的拮抗劑bisindolylmaleimide I影響。研究結果顯示在海馬迴CA1區域中CRF可能扮演在發育早期參與調控神經功能的角色。此外,適度的壓力可以透過促進荷爾蒙分泌,活化影響長期增益現象誘發所需的訊息傳遞路徑,而加速發育過程中海馬迴區域突觸塑性的成熟。
The term “stress” is generally defined in biological systems as any condition that seriously perturbs physiological and psychological homeostasis ranging from anxiety to posttraumatic stress disorder. With regard to stress effects on CNS, extensive evidence from animal and human studies indicates that psychological stress has a biphasic influence on cognitive function depending on the severity and context. Brief periods of stress could promote memory formation, whereas more severe or prolonged stressors can exhibit marked deficits in various learning and memory tasks. However, little is known about how it does so. Recent data suggest that the mechanisms underlying long-term potentiation (LTP) in the CA1 region of the hippocampus vary with developmental age. The physiological factors regulating this developmental change, however, have not yet been elucidated. Here we show that mild neonatal maternal separation accelerates the developmental switch in the signaling cascades for hippocampal CA1 LTP induction from a cyclic AMP-dependent protein kinase (PKA)- to a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent pattern via the activation of corticotrophin-releasing factor (CRF) system. Furthermore, this action appears to be mediated through an increased transcription of the isoform of CaMKII (CaMKII) gene. We also demonstrate that application of CRF to cultured hippocampal neurons significantly increases the expression of CaMKII, which is blocked by the non-specific CRF receptor antagonist, astressin, and specific CRF receptor 1 antagonist, NBI27911, and PKA inhibitor, KT5720, but not by the CRF receptor 2 antagonist, K41498, or protein kinase C inhibitor, bisindolylmaleimide I. These results suggest a novel role for CRF in regulating early developmental events in the hippocampus and indicate that although maternal deprivation is stressful for neonate, appropriate neonatal maternal separation can serve to promote an endocrine state that fosters the rate of maturation of the signaling cascades underlying the induction of LTP in developing hippocampus.
Akirav I, Richter-Levin G (1999) Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J. Neurosci. 19: 10530-10535.
Avishai-Eliner S, Yi SJ, Baram TZ (1996) Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system. Dev Brain Res 91:159-163.
Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399-10407.
Baram TZ, Yi S, Avishai-Eliner S, Schultz L (1997) Development neurobiology of the stress response: multilevel regulation of corticotropin-releasing hormone function. Ann N Y Acad Sci 814:252-265.
Benson DL, Gall CM, Isackson PJ (1992) Dendritic localization of type II calcium calmodulin-dependent protein kinase mRNA in normal and reinnervated rat hippocampus. Neuroscience 46:851-857.
Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331-356.
Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.
Blitzer RD, Wong D, Nouranifar R, Iyengar R, Landau EM (1995) Postsynaptic pathway gates early LTP in hippocampal CA1 region. Neuron 15:1403-1414.
Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, and Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding proten. Cell 79:59-68.
Braun AP, Schulman H (1995) A non-selective cation current activated via the multifunctional Ca2+-calmodulin-dependent protein kinase in human epithelial cells. J Physiol 488:37-55.
Bredy TW, Grant RJ, Champagne DL, Meaney MJ (2003) Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 18:2903-2909.
Brocke L, Srinivasan M, Schulman H (1995) Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J Neurosci 15:6797-6808.
Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10:1788-1798.
Cahill L, McGaugh JL (1998) Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 21: 294-299.
Chen Y, Bender RA, Frotscher M, Baram TZ (2001) Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci 21:7171-7181.
Chen Y, Bender RA, Brunson KL, Pomper JK, Grigoriadis DE, Wurst W, Baram TZ (2004) Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proc Natl Acad Sci USA 101:15782-15787.
Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105(1):7-17.
Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11:118-126.
Dautzenberg FM and Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23(2):71-77.
de Kloet ER, Oitzl MS and Joels M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 22: 422-426.
Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45-56.
Francis DD, Meaney MJ (1999) Maternal care and the development of stress responses. Curr Opin Neurobiol 9(1):128-134.
Grant SGN, O’Dell TJ, Harl KA, Stein PL, and Kandel ER (1992) Imparied long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903-1910.
Hahm JO, Langdon RB, Sur M (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351:568-570.
Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775-5781.
Huot RL, Plotsky PM, Lenox RH, McNamara RK (2002) Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res 950:52-63.
Huang CC, Liang YC, Hsu KS (1999) A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci 19:9728-9738.
Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133-1138.
Kaufman J, Plotsky PM, Nemeroff CB, Charney DS (2000) Effects of early adverse experiences on brain structure and function: clinical implications. Biol. Psychiatry 48:778–790.
Kim JJ, Yoon KS (1998) Stress: metaplastic effects in the hippocampus. Trends Neurosci 21: 505–509.
King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73-76.
Kirkwood A, Rioult MC, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381:526-528.
Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156(2):251-261.
Lee HJ, Kim JW, Yim SV, Kim MJ, Kim SA, Kim YJ, Kim CJ, Chung JH (2001) Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol Psychiatry 6:725-728.
Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo AF, Hanson P, Schulman H, Rosenfeld MG (1987) Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 84:5962-5966.
Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3:799-806.
Malenka RC, Nicoll RA (1999) Long-term potentiation--a decade of progress? Science 285:1870-1874.
Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649-711.
McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5:205-216.
McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol. Psychiatry 48: 721-731.
Meaney MJ, Aitken DH, Bhatnagar S, Berkel CV, Sapolsky RM (1988) Postnatal handling attenuates neuroendocrine, anatomical, and cognitive impairments related to the aged hippocampus. Science 238:766 –768.
Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161-1192.
Mima K, Deguchi S, Yamauchi T (2001) Characterization of 5' flanking region of alpha isoform of rat Ca2+/calmodulin-dependent protein kinase II gene and neuronal cell type specific promoter activity. Neurosci Lett 307(2):117-121.
Mooney R, Madison DV, Shatz CJ (1993) Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10:815-825.
Morris RGM, Anderson E, Lynch GS, and Baudry M (1986) Selective impairment of learing and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature (Lond) 319:774-776.
Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967-975.
Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA (2002) Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7:609-616.
Rongo C, Kaplan JM (1999) CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402:195-199.
Sapolsky RM, Meaney MJ (1986) Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. 396(1):64-76.
Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32
Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195-231.
Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol. 65(5):427-451.
Wu GY, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222-226.
Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, Palmiter RD, and Storm DR (1995) Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci USA 92: 220-224.
Xue J, Li G, Bharucha E, Cooper N (2002) Developmentally regulated expression of CaMKII and iGluRs in the rat retina. Dev Brain Res 138:61–70.
Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15-16.
Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits. Nat Neurosci 4:1207-1214.