簡易檢索 / 詳目顯示

研究生: 陳亮頤
Chen, Liang-Yi
論文名稱: 探討順鉑處理之頭頸癌細胞中細胞程序死亡-配體1對於表皮生長因子促進抗失巢凋亡的調控功能
Investigating the role of PD-L1 in the regulation of EGF-enhanced anoikis resistance in cisplatin-treated head and neck squamous cell carcinoma
指導教授: 陳炳焜
Chen, Ben-Kuen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 60
中文關鍵詞: 頭頸部鱗狀上皮細胞癌順鉑細胞休眠EGFPD-L1轉移
外文關鍵詞: Head and neck cancer, cisplatin, PD-L1, metastasis
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頭頸部鱗狀上皮細胞癌是一種具有局部復發和遠處轉移特性的侵襲性癌症。研究結果顯示,在順鉑(cisplatin)治療後的頭頸癌病患細胞程序死亡-配體1 (PD-L1)的表現量增加會導致其預後較差。化療所導致的頭頸癌細胞休眠以及腫瘤微環境的改變可能是造成化療後轉移復發的原因之一。因此,本篇的研究方向在於探討PD-L1是否參與化療後誘導的腫瘤休眠以及轉移復發。首先,釐清本身表皮生長因子受體(EGFR)過表達的頭頸癌細胞中PD-L1的功能與調控機轉,發現在EGF刺激下的頭頸癌細胞會透過ERK1/2和NF-κB的訊息傳遞路徑增加PD-L1的表現。EGF所誘導頭頸癌細胞PD-L1的表現,會參與調控其細胞爬行與轉移相關之基因表現。致弱PD-L1的表現可以抑制EGF所誘導頭頸癌細胞抗失巢凋亡的能力。為了探討化療後存活的頭頸癌細胞之作用機轉,建立cisplatin處理後存活的頭頸癌細胞HONE-1 CDDP-S系統。發現CDDP-S細胞生長速率下降且DEC2、NR2F1以及p27等休眠相關基因的表現量增加,表示其進入休眠狀態。此外,CDDP-S細胞具有PD-L1高表達的現象,以及在EGF的刺激下其敏感度增加,促使更高表現的PD-L1與EMT標的基因。從以上實驗結果推測,在休眠狀態的CDDP-S細胞中,PD-L1參與調控EGF所誘導的細胞爬行以及抗失巢凋亡的能力來促使癌轉移。將來或許可以使用合併EGFR抑制劑以及PD-L1阻斷劑的治療方式,降低化療後的頭頸癌腫瘤復發的可能性,有助於改善其預後不良的結果。

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with the properties of local recurrence and distant metastasis. Recently, it has been demonstrated that PD-L1 expression may be increased during cisplatin treatment, resulting in worse prognosis in HNSCC patients. After cessation of the therapy, the dormant cells may reactivation, resulting in tumor recurrence and development of chemotherapy-resistant cancer cells. In the other hand, the tumor microenvironment is one of the reasons for metastasis. Therefore, the aim of this study is to clarify the role of PD-L1 in chemotherapy-induced tumor dormancy and metastatic recurrence. The first, to clarify the mechanism involved in the regulation of PD-L1 expression in EGFR overexpression of HNSCC cell lines. We found that EGF induced PD-L1 expression through ERK1/2 and NF-κB pathways. In addition, PD-L1 regulated EGF-induced HNSCC cell migration and EMT markers. PD-L1 depletion repressed EGF-induced HNSCC anoikis resistance. To further analyze the role of PD-L1 in chemotherapy-induced tumor dormancy for HNSCC. We established HONE-1 CDDP-S cells and found proliferation rate of CDDP-S cells was slower than HONE-1 cells. Also, the expression of dormancy-associated genes DEC2, NR2F1, and p27 were increased, indicating that the formation of tumor dormancy was occurred in CDDP-S cells. The expression of PD-L1 was higher in CDDP-S cells, inducible PD-L1 and EMT phenotype were observed in the EGF-treated condition. The results indicate that PD-L1 may involve in EGF-promoted anoikis resistance and cell migration of CDDP-S cells. It also speculates that the combination of EGFR inhibitor and PD-L1 antibody may reduce the possibility of tumor recurrence after chemotherapy in HNSCC.

    中文摘要 I 英文摘要 II 致謝 V 目錄 VI 圖目錄 IX 縮寫表 XI 一、研究背景 1 1-1 頭頸部鱗狀上皮細胞癌 1 1-2 表皮生長因子受體EGFR對於頭頸癌轉移的調控機制 1 1-3 頭頸癌的治療方式 2 1-4 化療導致腫瘤微環境的改變與癌細胞的休眠 4 1-5 頭頸癌的免疫療法 6 1-6 PD-L1在頭頸癌的角色 7 1-7 頭頸癌EGFR的過表達和PD-L1的相關性 8 1-8 研究目的 9 二、實驗材料與方法 10 三、實驗結果 15 3-1 探討化療前的頭頸癌細胞中EGF所調控之PD-L1表現以及功能 15 3-1-1 探討EGF是否會誘導頭頸癌細胞PD-L1的表現 15 3-1-2 探討EGF如何調控頭頸癌細胞PD-L1的表現 16 3-1-3 探討EGF誘導頭頸癌PD-L1是否參與癌轉移的功能 17 3-2 探討化療後的頭頸癌細胞中EGF所調控之PD-L1表現以及功能 18 3-2-1 探討化療後頭頸癌細胞PD-L1的表現量以及其對於EGF的反應 18 3-2-2 建立HONE-1 CDDP-S細胞 21 3-2-3 探討HONE-1 CDDP-S細胞的特性 21 3-2-4 探討HONE-1 CDDP-S細胞PD-L1的表現量以及其對於EGF的反應 22 3-2-5 探討HONE-1 CDDP-S細胞EGF所調控之PD-L1與EMT基因表現 22 四、討論 23 4-1 頭頸癌細胞中PD-L1的醣基化修飾 23 4-2 頭頸癌細胞中PD-L1的調控機制 23 4-3 頭頸癌細胞中PD-L1的癌轉移能力 25 4-4 化療後存活的頭頸癌細胞之特性 26 4-5 總結 27 參考文獻 28 圖表 40 附錄 57

    1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA: a cancer journal for clinicians 69, 7-34 (2019).
    2 Chow, L. Q. Head and neck cancer. New England Journal of Medicine 382, 60-72 (2020).
    3 Vigneswaran, N. & Williams, M. D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral and Maxillofacial Surgery Clinics 26, 123-141 (2014).
    4 Bhave, S. L., Teknos, T. N. & Pan, Q. Molecular parameters of head and neck cancer metastasis. Critical Reviews™ in Eukaryotic Gene Expression 21 (2011).
    5 Veeramachaneni, R. et al. Analysis of head and neck carcinoma progression reveals novel and relevant stage-specific changes associated with immortalisation and malignancy. Scientific reports 9, 1-17 (2019).
    6 Liao, C. T. et al. Analysis of risk factors for distant metastases in squamous cell carcinoma of the oral cavity. Cancer: Interdisciplinary International Journal of the American Cancer Society 110, 1501-1508 (2007).
    7 Nead, K. T. et al. Evidence of a causal association between insulinemia and endometrial cancer: a Mendelian randomization analysis. JNCI: Journal of the National Cancer Institute 107 (2015).
    8 Ngan, H.-L., Wang, L., Lo, K.-W. & Lui, V. W. Y. Genomic landscapes of EBV-associated nasopharyngeal carcinoma vs. HPV-associated head and neck cancer. Cancers 10, 210 (2018).
    9 Leemans, C. R., Braakhuis, B. J. & Brakenhoff, R. H. The molecular biology of head and neck cancer. Nature reviews cancer 11, 9-22 (2011).
    10 Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. Journal of clinical oncology 24, 2666-2672 (2006).
    11 Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2-16 (2006).
    12 Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442-454 (2002).
    13 Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer 4, 118-132 (2004).
    14 Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L. & Aaronson, S. A. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. The Journal of cell biology 148, 779-790 (2000).
    15 Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nature reviews Molecular cell biology 15, 178-196 (2014).
    16 Zhao, L. et al. Flotillin-2 promotes nasopharyngeal carcinoma metastasis and is necessary for the epithelial-mesenchymal transition induced by transforming growth factor-β. Oncotarget 6, 9781 (2015).
    17 Lorch, J. H. et al. Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. Journal of Biological Chemistry 279, 37191-37200 (2004).
    18 Ohashi, S. et al. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer research 70, 4174-4184 (2010).
    19 Thomas, S. M. et al. Epidermal growth factor receptor-stimulated activation of phospholipase Cγ-1 promotes invasion of head and neck squamous cell carcinoma. Cancer research 63, 5629-5635 (2003).
    20 O‐Charoenrat, P. et al. Overexpression of epidermal growth factor receptor in human head and neck squamous carcinoma cell lines correlates with matrix metalloproteinase‐9 expression and in vitro invasion. International Journal of Cancer 86, 307-317 (2000).
    21 Eke, I. & Cordes, N. Dual targeting of EGFR and focal adhesion kinase in 3D grown HNSCC cell cultures. Radiotherapy and Oncology 99, 279-286 (2011).
    22 Howell, G. M. & Grandis, J. R. Molecular mediators of metastasis in head and neck squamous cell carcinoma. Head & Neck: Journal for the Sciences and Specialties of the Head and Neck 27, 710-717 (2005).
    23 Hsu, J.-Y. et al. Epidermal growth factor-induced cyclooxygenase-2 enhances head and neck squamous cell carcinoma metastasis through fibronectin up-regulation. Oncotarget 6, 1723 (2015).
    24 Hsu, J. Y., Chang, J. Y., Chang, K. Y., Chang, W. C. & Chen, B. K. Epidermal growth factor–induced pyruvate dehydrogenase kinase 1 expression enhances head and neck squamous cell carcinoma metastasis via up‐regulation of fibronectin. The FASEB Journal 31, 4265-4276 (2017).
    25 Herchenhorn, D. & Ferreira, C. G. Targeting epidermal growth factor receptor to optimize chemoradiotherapy in locally advanced head and neck cancer: has biology been taken into account? Journal of Clinical Oncology 29, e283-e284 (2011).
    26 Seshacharyulu, P. et al. Targeting the EGFR signaling pathway in cancer therapy. Expert opinion on therapeutic targets 16, 15-31 (2012).
    27 Moreira, J., Tobias, A., O’Brien, M. P. & Agulnik, M. Targeted therapy in head and neck cancer: an update on current clinical developments in epidermal growth factor receptor-targeted therapy and immunotherapies. Drugs 77, 843-857 (2017).
    28 Cognetti, D. M., Weber, R. S. & Lai, S. Y. Head and neck cancer: an evolving treatment paradigm. Cancer 113, 1911-1932 (2008).
    29 Haddad, R. I. & Shin, D. M. Recent advances in head and neck cancer. New England Journal of Medicine 359, 1143-1154 (2008).
    30 Pendleton, K. P. & Grandis, J. R. Cisplatin-based chemotherapy options for recurrent and/or metastatic squamous cell cancer of the head and neck. Clinical Medicine Insights: Therapeutics 5, CMT. S10409 (2013).
    31 Basu, A. & Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. Journal of nucleic acids 2010 (2010).
    32 Marullo, R. et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS one 8, e81162 (2013).
    33 Taberna, M., Oliva, M. & Mesía, R. Cetuximab-containing combinations in locally advanced and recurrent or metastatic head and neck squamous cell carcinoma. Frontiers in oncology 9, 383 (2019).
    34 Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. New England Journal of Medicine 354, 567-578 (2006).
    35 Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. New England Journal of Medicine 359, 1116-1127 (2008).
    36 Mehra, R., Cohen, R. B. & Burtness, B. A. The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clinical advances in hematology & oncology: H&O 6, 742 (2008).
    37 Bledsoe, T. J. et al. Split-course accelerated hypofractionated radiotherapy (SCAHRT): A safe and effective option for head and neck cancer in the elderly or infirm. Anticancer Research 36, 933-939 (2016).
    38 Argiris, A. et al. Evidence-based treatment options in recurrent and/or metastatic squamous cell carcinoma of the head and neck. Frontiers in oncology 7, 72 (2017).
    39 Suh, Y., Amelio, I., Urbano, T. G. & Tavassoli, M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell death & disease 5, e1018-e1018 (2014).
    40 Chang, P. M.-H. et al. Cetuximab-based therapy in recurrent/metastatic head and neck squamous cell carcinoma: experience from an area in which betel nut chewing is popular. Journal of the Chinese Medical Association 73, 292-299 (2010).
    41 Burtness, B., Goldwasser, M. A., Flood, W., Mattar, B. & Forastiere, A. A. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. Journal of Clinical Oncology 23, 8646-8654 (2005).
    42 Reers, S. et al. Cytokine changes in response to radio-/chemotherapeutic treatment in head and neck cancer. Anticancer Research 33, 2481-2489 (2013).
    43 Osisami, M. & Keller, E. T. Mechanisms of metastatic tumor dormancy. Journal of clinical medicine 2, 136-150 (2013).
    44 Whiteside, T. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904-5912 (2008).
    45 Zhou, J. et al. Tumor-Associated Macrophages: Recent Insights and Therapies. Frontiers in Oncology 10, 188 (2020).
    46 Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature immunology 11, 889-896 (2010).
    47 Wang, N., Liang, H. & Zen, K. Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Frontiers in immunology 5, 614 (2014).
    48 Sica, A. et al. in Seminars in cancer biology. 349-355 (Elsevier).
    49 Huang, Y., Tian, C., Li, Q. & Xu, Q. TET1 Knockdown Inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 Macrophage Polarization through the NF-κB Pathway in THP-1 Cells. International journal of molecular sciences 20, 2023 (2019).
    50 Fleetwood, A. J., Lawrence, T., Hamilton, J. A. & Cook, A. D. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. The Journal of immunology 178, 5245-5252 (2007).
    51 Chanput, W., Mes, J. J., Savelkoul, H. F. & Wichers, H. J. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food & function 4, 266-276 (2013).
    52 Sinha, P., Clements, V. K. & Ostrand-Rosenberg, S. Interleukin-13–regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer research 65, 11743-11751 (2005).
    53 Makita, N., Hizukuri, Y., Yamashiro, K., Murakawa, M. & Hayashi, Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International immunology 27, 131-141 (2015).
    54 Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. Journal of Experimental Medicine 210, 2477-2491 (2013).
    55 De Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature reviews cancer 6, 24-37 (2006).
    56 Leibowitz, M. S., Andrade Filho, P. A., Ferrone, S. & Ferris, R. L. Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes. Cancer immunology, immunotherapy 60, 525-535 (2011).
    57 Kuss, I., Hathaway, B., Ferris, R. L., Gooding, W. & Whiteside, T. L. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clinical cancer research 10, 3755-3762 (2004).
    58 López-Albaitero, A. et al. Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. The Journal of Immunology 176, 3402-3409 (2006).
    59 Strauss, L., Bergmann, C., Gooding, W., Johnson, J. T. & Whiteside, T. L. The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clinical cancer research 13, 6301-6311 (2007).
    60 Strauss, L. et al. A unique subset of CD4+ CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clinical Cancer Research 13, 4345-4354 (2007).
    61 Zhang, Q.-w. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS one 7, e50946 (2012).
    62 Middleton, J. D., Stover, D. G. & Hai, T. Chemotherapy-exacerbated breast cancer metastasis: a paradox explainable by dysregulated adaptive-response. International journal of molecular sciences 19, 3333 (2018).
    63 Ratajczak, M. Z., Jadczyk, T., Schneider, G., Kakar, S. S. & Kucia, M. Induction of a tumor-metastasis-receptive microenvironment as an unwanted and underestimated side effect of treatment by chemotherapy or radiotherapy. Journal of ovarian research 6, 1-10 (2013).
    64 RIEDEL, F., GÖTTE, K., GOESSLER, U., SADICK, H. & HÖRMANN, K. Targeting chemotherapy-induced VEGF up-regulation by VEGF antisense oligonucleotides in HNSCC cell lines. Anticancer research 24, 2179-2184 (2004).
    65 Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer research 64, 7336-7345 (2004).
    66 Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. The Journal of clinical investigation 120, 2030-2039 (2010).
    67 Thariat, J. et al. Integrating genomics in head and neck cancer treatment: Promises and pitfalls. Critical reviews in oncology/hematology 95, 397-406 (2015).
    68 Yadav, A. S. et al. The biology and therapeutic implications of tumor dormancy and reactivation. Frontiers in oncology 8, 72 (2018).
    69 Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175-180 (2016).
    70 Fluegen, G. et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature cell biology 19, 120-132 (2017).
    71 Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Reviews Cancer 14, 611-622 (2014).
    72 Chen, H. et al. LTBP-2 confers pleiotropic suppression and promotes dormancy in a growth factor permissive microenvironment in nasopharyngeal carcinoma. Cancer letters 325, 89-98 (2012).
    73 Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375, 1856-1867 (2016).
    74 Ferris, R. L. Immunology and immunotherapy of head and neck cancer. Journal of clinical oncology 33, 3293 (2015).
    75 Brunet, J.-F. et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature 328, 267-270 (1987).
    76 Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal 11, 3887-3895 (1992).
    77 Son, C.-H. et al. CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. Journal of Immunotherapy 37, 1-7 (2014).
    78 Gildener-Leapman, N., Ferris, R. L. & Bauman, J. E. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral oncology 49, 1089-1096 (2013).
    79 Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. The Journal of experimental medicine 174, 561-569 (1991).
    80 Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. Journal of Experimental Medicine 206, 3015-3029 (2009).
    81 Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677-704 (2008).
    82 Salmaninejad, A. et al. PD‐1/PD‐L1 pathway: Basic biology and role in cancer immunotherapy. Journal of cellular physiology 234, 16824-16837 (2019).
    83 Strati, A. et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Annals of Oncology 28, 1923-1933 (2017).
    84 Yan, X. et al. Prognostic factors for checkpoint inhibitor based immunotherapy: an update with new evidences. Frontiers in pharmacology 9, 1050 (2018).
    85 Cohen, E. E. et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). Journal for immunotherapy of cancer 7, 184 (2019).
    86 Jie, H.-B. et al. CTLA-4+ regulatory T cells increased in cetuximab-treated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer research 75, 2200-2210 (2015).
    87 Ng, H. Y. et al. Chemotherapeutic treatments increase PD-L1 expression in esophageal squamous cell carcinoma through EGFR/ERK activation. Translational oncology 11, 1323-1333 (2018).
    88 Leduc, C. et al. TPF induction chemotherapy increases PD-L1 expression in tumour cells and immune cells in head and neck squamous cell carcinoma. ESMO open 3 (2018).
    89 Chow, L. Q. et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. Journal of Clinical Oncology 34, 3838 (2016).
    90 Xu-Monette, Z. Y., Zhang, M., Li, J. & Young, K. H. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Frontiers in immunology 8, 1597 (2017).
    91 Saâda-Bouzid, E. et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Annals of Oncology 28, 1605-1611 (2017).
    92 Müller, T. et al. PD-L1: a novel prognostic biomarker in head and neck squamous cell carcinoma. Oncotarget 8, 52889 (2017).
    93 Ritprajak, P. & Azuma, M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral oncology 51, 221-228 (2015).
    94 Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of experimental medicine 192, 1027-1034 (2000).
    95 Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Science translational medicine 4, 127ra137-127ra137 (2012).
    96 Azuma, K. et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Annals of oncology 25, 1935-1940 (2014).
    97 Strome, S. E. et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer research 63, 6501-6505 (2003).
    98 Tsushima, F. et al. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral oncology 42, 268-274 (2006).
    99 Chen, J. et al. Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology 217, 385-393 (2012).
    100 Li, J. et al. Knockdown of PD-L1 in human gastric cancer cells inhibits tumor progression and improves the cytotoxic sensitivity to CIK therapy. Cellular Physiology and Biochemistry 41, 907-920 (2017).
    101 Liao, Y. et al. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget 8, 30276 (2017).
    102 Chen, L. et al. PD-L1 expression promotes epithelial to mesenchymal transition in human esophageal cancer. Cellular physiology and biochemistry 42, 2267-2280 (2017).
    103 Zheng, A. et al. PD‑L1 promotes head and neck squamous cell carcinoma cell growth through mTOR signaling. Oncology Reports 41, 2833-2843 (2019).
    104 D'incecco, A. et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. British journal of cancer 112, 95-102 (2015).
    105 Concha-Benavente, F. et al. Identification of the cell-intrinsic and-extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer research 76, 1031-1043 (2016).
    106 Chen, M. et al. Insluin and epithelial growth factor (EGF) promote programmed death ligand 1 (PD-L1) production and transport in colon cancer stem cells. BMC cancer 19, 153 (2019).
    107 Yin, X. et al. Epidermal growth factor receptor stabilizes programmed death ligand 1 by glycosylation in colorectal cancer with microstatellite instability status. Journal of Bio-X Research 2, 1-8 (2019).
    108 Zhang, W. et al. induction of PD-l1 expression by epidermal growth factor receptor–mediated signaling in esophageal squamous cell carcinoma. OncoTargets and therapy 10, 763 (2017).
    109 Lee, H.-H. et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36, 168-178. e164 (2019).
    110 Heath, J. K. et al. Epidermal growth factor-stimulated parathyroid hormone-related protein expression involves increased gene transcription and mRNA stability. Biochemical Journal 307, 159-167 (1995).
    111 Le, P., Lazorick, S., Whichard, L., Haynes, B. & Singer, K. Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor alpha regulate mRNA levels of interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6 in human thymic epithelial cells at a post-transcriptional level. The Journal of experimental medicine 174, 1147-1157 (1991).
    112 Soo, R. A. et al. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: Current controversies and future directions. Lung Cancer 115, 12-20 (2018).
    113 Chang, W.-C. et al. PTX3 gene activation in EGF-induced head and neck cancer cell metastasis. Oncotarget 6, 7741 (2015).
    114 Liao, Y. et al. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene 36, 2228-2242 (2017).
    115 Sarkis, S. A., Abdullah, B. H., Majeed, B. A. A. & Talabani, N. G. Immunohistochemical expression of epidermal growth factor receptor (EGFR) in oral squamous cell carcinoma in relation to proliferation, apoptosis, angiogenesis and lymphangiogenesis. Head & neck oncology 2, 13 (2010).
    116 Dong, P., Xiong, Y., Yue, J., Hanley, S. J. & Watari, H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Frontiers in oncology 8, 386 (2018).
    117 Wu, X.-L. et al. Diagnostic and prognostic value of circulating tumor cells in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Scientific reports 6, 20210 (2016).
    118 Li, C.-W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature communications 7, 12632 (2016).
    119 Shi, Y. Regulatory mechanisms of PD-L1 expression in cancer cells. Cancer Immunology, Immunotherapy 67, 1481-1489 (2018).
    120 Tsai, T.-F. et al. Cisplatin contributes to programmed death-ligand 1 expression in bladder cancer through ERK1/2-AP-1 signaling pathway. Bioscience reports 39 (2019).
    121 Qin, X., Liu, C., Zhou, Y. & Wang, G. Cisplatin induces programmed death-1-ligand 1 (PD-L1) over-expression in hepatoma H22 cells via Erk/MAPK signaling pathway. Cellular and molecular biology (Noisy-le-Grand, France) 56, OL1366-1372 (2010).
    122 Lee, K. W. et al. Peroxiredoxin II restrains DNA damage-induced death in cancer cells by positively regulating JNK-dependent DNA repair. Journal of Biological Chemistry 286, 8394-8404 (2011).
    123 Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer–initiating cells to radiation. Journal of the National Cancer Institute 98, 1777-1785 (2006).
    124 Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G. & Chiarugi, P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Molecular and cellular biology 25, 6391-6403 (2005).
    125 Yee, C., Yang, W. & Hekimi, S. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157, 897-909 (2014).
    126 Wangpaichitr, M. et al. Relationship of metabolic alterations and PD-L1 expression in cisplatin resistant lung cancer. Cell & developmental biology 6 (2017).
    127 Dayem, A. A., Choi, H.-Y., Kim, J.-H. & Cho, S.-G. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers 2, 859-884 (2010).
    128 Loh, C.-Y. et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 8, 1118 (2019).
    129 Mattijssen, V. et al. E‐cadherin expression in head and neck squamous‐cell carcinoma is associated with clinical outcome. International journal of cancer 55, 580-585 (1993).
    130 Zhu, G. J. et al. Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, β-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncology letters 15, 3472-3481 (2018).
    131 Hazan, R. B., Qiao, R., Keren, R., Badano, I. & Suyama, K. Cadherin switch in tumor progression. Annals of the New York Academy of Sciences 1014, 155-163 (2004).
    132 Yao, H., Wang, H., Li, C., Fang, J.-Y. & Xu, J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Frontiers in immunology 9, 1774 (2018).
    133 Du, S. et al. Blockade of tumor-expressed PD-1 promotes lung cancer growth. Oncoimmunology 7, e1408747 (2018).
    134 Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. New England Journal of Medicine 373, 1627-1639 (2015).
    135 Evans, E. B. & Lin, S.-Y. New insights into tumor dormancy: Targeting DNA repair pathways. World journal of clinical oncology 6, 80 (2015).
    136 Sosa, M. S. et al. NR2F1 controls tumour cell dormancy via SOX9-and RARβ-driven quiescence programmes. Nature communications 6, 1-14 (2015).
    137 Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature cell biology 15, 1351-1361 (2013).
    138 Deng, X., Ewton, D. Z. & Friedman, E. Mirk/Dyrk1B maintains the viability of quiescent pancreatic cancer cells by reducing levels of reactive oxygen species. Cancer research 69, 3317-3324 (2009).
    139 Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. Journal of the National Cancer Institute 98, 316-325 (2006).
    140 Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nature Reviews Cancer, 1-14 (2020).

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE