| 研究生: |
趙淑君 Chao, Shu-Chun |
|---|---|
| 論文名稱: |
結合時間序列與擴散模型預測創新產品銷售量之研究─以智慧型手機為例 Combining Time Series and Bass Diffusion Models to Forecast the Sales of Innovative Product - A Case of Smartphone |
| 指導教授: |
耿伯文
Kreng, Victor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 擴散模型 、時間序列 、自我迴歸整合移動平均模型 |
| 外文關鍵詞: | Diffusion model, Time Series, ARIMA model |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的快速的發展,消費者對於產品的需求愈來愈高,企業也必須不斷追求創新以滿足消費者的需求,使得產品的生命週期愈來愈短暫,在產品銷售量的評估上也愈來愈重要。企業為了獲得更大的利潤便須有效率的安排生產計畫並準確的評估銷售,尤其銷售量會直接反映企業的營利狀況,因此銷售量的預測變成為了企業獲利的重要關鍵之一。
由於在創新科技產品中,消費性電子產品在現今的消費市場佔有重要地位,故本研究將以智慧型手機(iPhone)的銷售量作為研究對象,智慧型手機銷售量通常以季來評估,iPhone每年推出新一代的創新產品,在智慧型手機生命週期愈來愈短的情況下,銷售量的預測就顯得愈來愈重要。而由於Bass擴散模型對於iPhone銷售量之預測有逐漸失準的趨勢,為了使預測結果維持在高準度之水準,本研究以結合Bass擴散模型與自我迴歸整合移動平均(ARIMA)模型進行預測,並比較結合前後之差異及探討。
本研究發現Bass模型的預測能力於前三季的準確度非常高,但其準確度會隨著時間漸漸失準,因此本研究加入時間序列的概念,結合ARIMA模型進行預測後,發現由於考慮了序列值之間的自相關程度,使預測值之準確度有明顯提升。
In recent years, people care about the demand of product so much that companies must improve product quality and pursue innovation constantly to meet consumer’s demand. As a result, the product lifetime of mobile phones has been shortened. In order to make more profits, enterprises should arrange the production plan effectively and evaluate sales volume accurately. Therefore, it’s important that companies modify marketing strategies and manufacturing processes based on consumer behavior.
The purpose of this research is to combine Bass diffusion model and ARIMA model to establish an innovation diffusion model which can be applied to modify the forecast the innovation products. This project will take the global sales of iPhone as research object. The researcher will able to forecasting sales volume accurately. After adding the concept of time series and concerning the auto-regressive among the quarters, the accuracy of predicted value would be better.
中文文獻
陳旭昇(2012)《時間序列分析-總體經濟與財務金融之應用》,東華書局
楊奕農(2005)《時間序列分析-經濟與財務上之應用》,雙葉書廊
英文文獻
Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255-265.
Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of marketing Research, 291-295.
Bass, F. (1969). A new product growth model for product diffusion.Management Science, 15(5), 215-227.
Bass, F. M. (2004). Comments on “a new product growth for model consumer durables the bass model”. Management science, 50(12_supplement), 1833-1840.
Box, G. E., & Jenkins, G. M. (1976). Time series analysis: forecasting and control, revised ed. Holden-Day.
Christodoulos, C., Michalakelis, C., & Varoutas, D. (2010). Forecasting with limited data: Combining ARIMA and diffusion models. Technological forecasting and social change, 77(4), 558-565.
Fourt, L. A., & Woodlock, J. W. (1960). Early prediction of market success for new grocery products. The Journal of Marketing, 31-38.
Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics.Journal of econometrics, 2(2), 111-120.
Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton: Princeton university press.
Heeler, R. M., & Hustad, T. P. (1980). Problems in predicting new product growth for consumer durables. Management Science, 26(10), 1007-1020.
Huang, S. J., & Shih, K. R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. Power Systems, IEEE Transactions on, 18(2), 673-679.
Kalish, S. (1985). A new product adoption model with price, advertising, and uncertainty. Management science, 31(12), 1569-1585.
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. London: Butterworth Scientific.
Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303.
Mahajan, V., & Muller, E. (1979). Innovation diffusion and new product growth models in marketing. The Journal of Marketing, 55-68.
Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion models in marketing: A review and directions for research. The Journal of Marketing, 1-26.
Mahajan, V., Muller, E., & Wind, Y. (Eds.). (2000). New-product diffusion models. Springer.
Mahajan, V., & Peterson, R. A. (1979). First-purchase diffusion models of new-product acceptance. Technological Forecasting and Social Change, 15(2), 127-146.
Mahajan, V., & Peterson, R. A. (Eds.). (1985). Models for innovation diffusion(Vol. 48). Sage.
Mahajan, V., & Peterson, R. A. (1978). Innovation diffusion in a dynamic potential adopter population. Management Science, 24(15), 1589-1597.
Mahajan, V., & Wind, Y. (1988). New product forecasting models: directions for research and implementation. International Journal of Forecasting, 4(3), 341-358.
Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica: Journal of the Econometric Society, 741-766.
Meade, N., & Islam, T. (2006). Modelling and forecasting the diffusion of innovation–A 25-year review. International Journal of Forecasting, 22(3), 519-545.
Nihan, N. L., & Holmesland, K. O. (1980). Use of the Box and Jenkins time series technique in traffic forecasting. Transportation, 9(2), 125-143.
Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products.Management science, 33(9), 1069-1086.
Priestley, M. B. (1981). Spectral analysis and time series.
Putsis, W. P. (1998). Parameter variation and new product diffusion. Journal of Forecasting, 17(3‐4), 231-257.
Schmittlein, D. C., & Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Marketing science, 1(1), 57-78.
Simon, H., & Sebastian, K. H. (1987). Diffusion and advertising: the German telephone campaign. Management Science, 33(4), 451-466.
Srinivasan, V., & Mason, C. H. (1986). Technical Note-Nonlinear Least Squares Estimation of New Product Diffusion Models. Marketing science, 5(2), 169-178.
Theil, H. (1965). The analysis of disturbances in regression analysis. Journal of the American Statistical Association, 60(312), 1067-1079.
Rogers Everett, M. (1995). Diffusion of innovations.(4th) New York.
Rogers, E. M. (2002). Diffusion of preventive innovations. Addictive behaviors,27(6), 989-993.
Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.
Westbrook, R. A., & Oliver, R. L. (1991). The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of consumer research, 84-91.
校內:2025-12-31公開