| 研究生: |
鄭亞寰 Cheng, Ya-Hwang |
|---|---|
| 論文名稱: |
電泳披覆二氧化矽粉體製備一維微米絕緣圖案之研究 Fabrication of one dimensional insulated micropattern of silica by electrophoretic deposition |
| 指導教授: |
黃肇瑞
Hwang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 積層陶瓷電容器 、電泳披覆法 、三電極系統 、二氧化矽 |
| 外文關鍵詞: | multilayer ceramic capacitor, electrophoretic deposition, three electrodes system, silica |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電泳披覆技術於模擬積層陶瓷電容器結構之指叉電極沈積二氧化矽微米圖案,以期望能應用於製備積層陶瓷電容器內電極絕緣層,提高有效電容面積。實驗先將二氧化矽粉體分散於異丙醇,分析懸浮液性質及不同分散方法對粒子分散性之影響,結果發現;二氧化矽之等電位點約為5,加入酸時二氧化矽粒子帶電量皆不高;添加鹼則能使粒子帶負電,且pH=10.5時具最大zeta電位量值-38 mV;而當pH大於10.5時懸浮液會產生凝聚,降低懸浮液穩定性。另外將二氧化矽懸浮液以振動球磨處理30分鐘後分散性最佳,且由粒徑分析結果可知數量平均粒徑為58 nm,應可使堆積圖案具較高解析度,後續研究以前述結果配製最佳懸浮液供電泳披覆用。研究再以傳統式二電極裝置與三電極裝置進行電泳披覆,結果發現使用三電極式裝置具有較高電泳沉積選擇性,研究並提出使用二電極式裝置選擇性較差之原因之一是來自二氧化矽粒子所受靜電合力方向可能指向不帶電電極。以三電極式裝置進行電泳披覆時,用線寬及線距為20至200 微米的指叉電極做為基材,由實驗結果可得線寬及線距越小者沉積速率越快,且生成圖案所需施加電壓越低,展現此製程具有能製備圖案在更細小電極之潛力。最後經電泳參數調整,以10 伏特電泳披覆20秒後,再以800℃燒結,可得無裂縫之二氧化矽微米圖案,以電性量測儀測得圖案電阻值為7.04×109 ohm,符合一般積層陶瓷電容器所需標準,且由奈米刮痕試驗機分析,圖案經燒結後較初鍍時具更高附著性。根據以上結果,三電極式電泳披覆技術具備快速、高選擇性等優點,極具應用至製備積層陶瓷電容器作為絕緣層之潛力。
Micropattern of silica was fabricated on interdigitated array (IDA) electrode, which is an ideal structure of MLCC (multilayer ceramic capacitor) by EPD (electrophoretic deposition). This technique was applied to fabricate insulated layer of inner electrode of MLCC to increase the effective capacity area. First, silica powder was dispersed with different methods in isopropanol (IPA) and then suspension properties were analyzed. From this analysis, it is found that isoelectic point (IEP) of silica was close to 5, zeta potential of silica reached maximum value of -38 mV at pH=10.5, and the average particle size was estimated to be 58 nm. Then, silica particles were deposited on IDA electrodes using ether two electrodes or three electrodes system by EPD. The three electrodes system produced better deposition selectivity, which may due to electric field distribution. Smaller IDA electrode performed faster deposition rate and need lower voltage to fabricate micropattern. Crack-free micropattern of silica was fabricated under applied voltage of 10 V for 20 s followed sintering at 800˚C. The resistance of micropattern was found to be 7.04×109 ohm measured by electric property analyzer, and the adhesion of micropattern was better after sintering. Base on results, EPD process using three electrodes system was very fast, with high selective and was suitable for fabrication of insulated layer for MLCC.
1. I. Corni, M. P. Ryan, and A. R. Boccaccini, "Electrophoretic deposition: From traditional ceramics to nanotechnology," Journal of the European Ceramic Society, 28, 7, pp. 1353-1367(2008)
2. F. Hossein-Babaei, and F. Taghibakhsh, “Electrophoretically Deposited Zinc Oxide Thick Film Gas Sensor,” Electronic Letter, 36, pp. 1815–1816(2000)
3.G. Anne, K. Vanmeensel, J. Vleugels and O. Van der Biest, “Electrophoretic deposition as a novel near net shaping technique for functionally graded biomaterials” Electrophoretic Deposition: Fundamentals and Applications II. Key Eng. Mater., 314, pp. 213–218 (2006)
4.I. Zhitomirsky and A. Petric, “Electrophoretic deposition of ceramic materials for fuel cell application,” Journal of Europe Ceramic Society, 20, pp. 2055–2061 (2000)
5. Richard M. Pashley and Marilyn E. Karaman, Applied Colloid and Surface Chemistry, John Wiley and Sons, Ltd, England, p.6 (2004)
6. 陳宗淇,戴閩光,“膠體化學”,高等教育出版社, 234-237 頁,民73年。
7. 洪永泰,電泳披覆法製作積層PZT壓電致動器之電極表面絕緣層,逢甲大學碩士論文,20頁,民86年。
8. P. Sarkar and P. S. Nicholson, “Electrophoretic deposition(EPD) : mechanisms, kinetics, and application to ceramics,” Journal of American Ceramic Society, 79, 8, pp. 1987-2002(1996)
9.R. J. Hunter, Zeta potential in colloidal science, Academic Press, London (1981)
10. N. L. Weise(editor), SME Mineral Process Handbook Vol. 1, Society of Mining Engineers, p. 542, New York(1985)
11. L. Besra and M. Liu, "A review on fundamentals and applications of electrophoretic deposition (EPD)," Progress in Materials Science, 52, 1, pp. 1-61(2007)
12. J. Lyklema, “Water at interfaces: a colloid-chemical approach,” Journal of Colloidal and Interface Society, 58, 2, pp. 50-242(1977)
13. P. C. Hiemenz, Principles of colloid and surface chemistry. 2nd edition, Marcel Dekker, New York(1986)
14.魏民傑,電泳披覆奈米級玻璃粉體製作金屬層與IC頂層內連接導線之介電保護層,逢甲大學碩士論文,57頁,民92年。
15.P. Sarkar and P. S. Nicholson, "Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics," Journal of the American Ceramic Society, 79, 8, pp. 1987-2002(1996)
16. J. N. Israelachvili, Intermolecular and surface forces 2nd edition, Academic Press, New York, p. 248( 1992)
17. L. Besra, T. Uchikoshi, T. S. Suzuki, and Y. Sakka, "Bubble-Free Aqueous Electrophoretic Deposition (EPD) by Pulse-Potential Application," Journal of the American Ceramic Society, 91, 10, pp. 3154-3159(2008)
18 R. Clasen, in Proceedings of the 2nd Int. Conf. on Powder Processing Science, Berchtesgaden, p. 633(1988)
19. R. W. Powers, "Electrophoretic forming of beta-alumina ceramic," Journal of the Electrochemical Society, 122, 4, pp. 490-500(1975)
20. H. Negishi, H. Yanagishita and H. Yokokawa, Electrophoretic deposition of solid oxide fuel cell material powders. In: Proceedings of the electrochemical society on electrophoretic deposition: fundamentals and applications, vol. 2002-21, USA, p. 214–221(2002)
21. J. Cordelair and P. Greil, “Discrete element modeling of solid formation during electrophoretic deposition,” Journal of Material Science, 39, pp. 1017–1021(2004)
22. Y. Castro, B. Ferrari, R. Moreno, and A. Duran, "Silica sol-gel coatings on metals produced by EPD," Journal of Sol-Gel Science and Technology, 26, 1-3, pp. 735-739(2003)
23. S. K. Rha, T. P. Chou, G. Cao, Y. S. Lee, and W. J. Lee, "Characteristics of silicon oxide thin films prepared by sol electrophoretic deposition method using tetraethylorthosilicate as the precursor," Current Applied Physics, 9, 2, pp. 551-555(2009)
24. H. Negishi, A. Endo, T. Ohmori, and K. Sakaki, "Fabrication of mesoporous silica coating by electrophoretic deposition," Industrial & Engineering Chemistry Research, 47, 19, pp. 7236-7241(2008)
25.R. Tomasi, D. Sireude, R. Marchand, Y. Scudeller, and P. Guillemet, "Preparation of a thermal insulating material using electrophoretic deposition of silica particles," Materials Science and Engineering B-Solid State Materials for Advanced Technology, 137, 1-3, pp. 225-231(2007)
26. J. Tabellion, J. Zeiner, and R. Clasen, "Manufacturing of pure and doped silica and multicomponent glasses from SiO2 nanoparticles by reactive electrophoretic deposition," Journal of Materials Science, 41, 24, pp. 8173-8180(2006)
27. Y. Castro, B. Ferrari, R. Moreno, and A. Duran, "Coatings produced by electrophoretic deposition from nano-particulate silica sol-gel suspensions," Surface & Coatings Technology, 182, 2-3, pp. 199-203(2004)
28. C. Kaya, A. R. Boccaccini, and P. A. Trusty, "Processing and characterisation of 2-D woven metal fibre-reinforced multilayer silica matrix composites using electrophoretic deposition and pressure filtration," Journal of the European Ceramic Society, 19, 16, pp. 2859-2866(1999)
29. K. Hasegawa, S. Kunugi, M. Tatsumisago, and T. Minami, "Preparation of thick films by electrophoretic deposition using surface modified silica particles derived from sol-gel method," Journal of Sol-Gel Science and Technology, 15, 3, pp. 243-249(1999)
30. K. Hasegawa, H. Nishimori, M. Tatsumisago, and T. Minami, "Effect of poly(acrylic acid) on the preparation of thick silica films by electrophoretic sol gel deposition of re-dispersed silica particles," Journal of Materials Science, 33, 4, pp. 1095-1098(1998)
31. H. Nishimori, M. Tatsumisago, and T. Minami, "Heat-treatment effect of dispersed particles on the preparation of thick silica films by using electrophoretic sol-gel deposition," Journal of Materials Science, 31, 24, pp. 6529-6533(1996)
32. H. Nishimori, K. Hasegawa, M. Tatsumisago, and T. Minami, "Preparation of thick silica films in the presence of poly(acrylic acid) by using electrophoretic sol-gel deposition," Journal of Sol-Gel Science and Technology, 7, 3, pp. 211-216(1996)
33. K. Kamada, H. Fukuda, K. Maehara, Y. Yoshida, M. Nakai, S. Hasuo, and Y. Matsumoto, "Insertion of SiO2 nanoparticles into pores of anodized aluminum by electrophoretic deposition in aqueous system," Electrochemical and Solid State Letters, 7, 8, pp. B25-B28(2004)
34. S. C. Wang and B. C. Huang, "Field emission properties of Ag/SiO2/carbon nanotube films by pulsed voltage co-electrophoretic deposition," Thin Solid Films, 517, 3, pp. 1245-1250(2008)
35. K. Smeets, J. Tabellion, and R. Clasen, “Modification of green bodies by incorporating nanosized particles via electrophoretic deposition (EPD),” in Euro Ceramics Vii, Pt 1-3., pp. 2069-2072(2002)
36. T. Ishihara, K. Shimose, T. Kudo, H. Nishiguchi, T. Akbay and Y. Takita,” Preparation of yttria-stabilized zirconia thin films on strontium-doped LaMnO3 cathode substrates via electrophoretic deposition for solid oxide fuel cells,” Journal of the American Ceramic Society, 83, 8, pp. 1921-1927(2000)
37. F. L. Chen and M. L. Liu, "Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process," Journal of the European Ceramic Society, 21, 2, pp. 127-134(2001)
38. M. Giersig and P. Mulvaney, "Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition," Langmuir, 9, 12, pp. 3408-3413(1993)
39. M. Giersig and P. Mulvaney, "Formation of Ordered 2-Dimensional Gold Colloid Lattices by Electrophoretic Deposition," Journal of Physical Chemistry, 97, 24, pp. 6334-6336(1993)
40. S. R. Yeh, M. Seul, and B. I. Shraiman, "Assembly of ordered colloidal aggregates by electric-field-induced fluid flow," Nature, 386, 6620, pp. 57-59(1997)
41. S. R. Yeh, M. Seul, and B. I. Shraiman, "Assembly of ordered colloidal aggregates by electric-field-induced fluid flow," Nature, 386, 6620, pp. 57-59(1997)
42. R. C. Bailey, K. J. Stevenson, and J. T. Hupp, "Assembly of micropatterned colloidal gold thin films via microtransfer molding and electrophoretic deposition," Advanced Materials, 12, 24, pp. 1930-1934(2000)
43.P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, "Electrophoretic deposition of ZnO nanoparticles, from micropatterns to substrate coverage," Nanotechnology, 19, 24( 2008)
44. Y. J. Wu, J. Li, and M. Kuwabara,” Fabrication and characterization of micropatterned barium titanate ceramics,” Electroceramic, 21, pp.67-71(2008)
45. N. V. Dziomkina, M. A. Hempenius, and G. J. Vancso, "Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition onto patterned surfaces," Advanced Materials, 17, 2, pp. 237-240(2005)
46. E. Kumacheva, R. K. Golding, M. Allard, and E. H. Sargent, "Colloid crystal growth on mesoscopically patterned surfaces: Effect of confinement," Advanced Materials, 14, 3, pp. 221-224(2002)
47. X. G. Xiong, P. Makaram, A. Busnaina, K. Bakhtari, S. Somu, N. McGruer, and J. Park, "Large scale directed assembly of nanoparticles using nanotrench templates," Applied Physics Letters, 89, 19( 2006)
48. W. D. Ristenpart, P. Jiang, M. A. Slowik, C. Punckt, D. A. Saville, and I. A. Aksay, "Electrohydrodynamic Flow and Colloidal Patterning near Inhomogeneities on Electrodes," Langmuir, 24, 21, pp. 12172-12180(2008)
49.J. I. Hamagami, K. Hasegawa, and K. Kanamura, "3D particle assembly in micro-scale by using electrophoretic micro-fabrication technique," Electrophoretic Deposition: Fundamentals and Applications II, 314, pp. 7-12(2006)
50. J. Hamagami, K. Hasegawa, and K. Kanamura, "Development of particle assembling technology by using micro-electrophoretic deposition process," Electroceramics in Japan Vi, 248, pp. 195-198(2003)
51. K. Kanamura and J. Hamagami, "Innovation of novel functional material processing technique by using electrophoretic deposition process," Solid State Ionics, 172, 1-4, pp. 303-308(2004)
52. J. Hamagami, K. Hasegawa, and K. Kanamura, "Micropatterning of monodisperse spherical particles by electrophoretic deposition process using interdigitated microarray electrode," Key Engineering Materials,301, pp. 243-246(2005)
53. J. Hamagami, K. Hasegawa, and K. Kanamura, "Micropattern of colloidal crystal by using electrophoretic deposition process with three-electrode system," Key Engineering Materials, 320, pp. 171-174(2006)
54.H. Munakata, T. Sugiura, and K. Kanamura, "Fabrication of 3d microelectrodes for lithium ion batteries by electrophoretic deposition," Functional Materials Letters, 2, 1, pp. 9-12(2009)
55. F. Iwata, S. Nagami, Y. Sumiya, and A. Sasaki, "Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe," Nanotechnology, 18, 10, pp. 5(2007)
56.W. M. Choi and O. Park, "The fabrication of micropatterns of a 2D colloidal assembly by electrophoretic deposition," Nanotechnology, 17, 1, pp. 325-329(2006)
57. R. C. Hayward, D. A. Saville, and I. A. Aksay, "Electrophoretic assembly of colloidal crystals with optically tunable micropatterns," Nature, 404, 6773, pp. 56-59(2000)
58. J. Zeiner and R. Clasen, "Fabrication of microstructures by means of electrophoretic deposition (EPD)," Electrophoretic Deposition: Fundamentals and Applications Ii, 314, pp. 57-62(2006)
59. T. Uchikoshi, S. Furumi, N. Shirahata, T. S. Suzuki, and Y. Sakka, "Conductive polymer coating on nonconductive ceramic substrates for use in the electrophoretic deposition process," Journal of the American Ceramic Society, 91, 5, pp. 1674-1677(2008)
60. G. H. Wang, P. Sarkar, and P. S. Nicholson, "Influence of acidity on the electrostatic stability of alumina suspensions in ethanol," Journal of the American Ceramic Society, 80, 4, pp. 965-972(1997)
61.S. Sakthivel, V. V. Krishnan, and B. Pitchumani, "Influence of suspension stability on wet grinding for production of mineral nanoparticles," Particuology, 6, 2, pp. 120-124(2008)
62. S. Tsantilis and S. E. Pratsinis, "Soft- and hard-agglomerate aerosols made at high temperatures," Langmuir, 20, 14, pp. 5933-5939(2004)
63.P. Ding, M. G. Orwa, and A. W. Pacek, "De-agglomeration of hydrophobic and hydrophilic silica nano-powders in a high shear mixer," Powder Technology, 195, 3, pp. 221-226(2009)
64. G. Petzold, R. Rojas-Reyna, M. Mende, and S. Schwarz, "Application Relevant Characterization of Aqueous Silica Nanodispersions," Journal of Dispersion Science and Technology, 30, 8, pp. 1216-1222(2009)
65. S. Yanagida, A. Nakajima, Y. Kameshima, N. Yoshida, T. Watanabe, and K. Okada, "Preparation of a crack-free rough titania coating on stainless steel mesh by electrophoretic deposition," Materials Research Bulletin, 40, 8, pp. 1335-1344(2005)
校內:2014-07-29公開