簡易檢索 / 詳目顯示

研究生: 江政隆
Chiang, Cheng-Lung
論文名稱: 磷酸鈣鹽類之微小化研究及應用
指導教授: 朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 123
中文關鍵詞: 磷灰石骨水泥
外文關鍵詞: apatite, bone cement
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    磷酸鈣鹽類屬於生物活性陶瓷,於具有生物可吸收性且與人類骨頭相似,所以廣泛的應用於骨頭修復以及取代的應用上。在所有的磷酸鈣鹽類中與骨頭最相似的磷灰石為碳基磷灰石,其特性為顆粒粒徑小以及溶解度高以及低結晶度。經過燒結後的磷酸鈣鹽類則以四鈣磷酸鹽最受重視,除了具生物可吸收性外,其初期硬化具高強度、可注射性、最終產物和人體骨相似均為其特點。然而現今製造四鈣磷酸鹽方式大多為固相燒結方式配合研磨獲取磷酸鈣粉末,不僅耗時費力,機械耗損及汙染問題也是需克服的條件。
    本實驗為利用溼化學析出方式,添加阻斷劑分隔析出物再配合燒方式使阻斷劑氣化得到四鈣磷酸鹽粉末。在析出反應過程中所獲得的前趨物鈣磷比例接近2,經過儀器分析之後發現此磷灰石為碳基磷灰石。當添加阻斷劑於化學析出過程中時不會影響析出物之組成,並且對於燒結過後的粉末粒徑具有微小化之效果且可以提升抗壓強度。

    N/A

    總目錄 摘要 ................................................I 總目錄 ...............................................II 圖目錄 .............................................VIII 表目錄 ............................................. XIII 第一章 理論基礎與文獻回顧..............................1 1-1 人體硬組織:骨頭和牙齒...........................1 1-2 生醫材料........................................3 1-2-1 生醫材料的定義..................................4 1-2-2 生醫材料的分類..................................4 1-2-2-1 金屬材料........................................4 1-2-2-2 高分子材料......................................5 1-2-2-3 陶瓷材料........................................6 1-2-2-4 複合物材料......................................7 1-3 磷酸鈣鹽類簡介..................................8 1-3-1 氫氧基磷灰石....................................9 1-3-2 非晶質磷酸鈣鹽類...............................10 1-3-3 四鈣磷酸鹽.....................................11 1-4 磷酸鈣骨水泥...................................13 1-5 奈米材料製作方式回顧與簡介.....................15 1-5-1 化學析出法.....................................15 1-5-2 溶膠-凝膠法....................................17 1-5-3 水熱法.........................................19 1-6 成核結晶理論...................................21 1-6-1 成核熱力學理論.................................21 1-6-2 晶體成長.......................................22 1-7 阻斷劑.........................................23 1-8 實驗目的.......................................24 第二章 實驗方法與步驟.................................32 2-1 實驗材料簡介...................................32 2-2 新型磷酸鈣骨水泥材料研發流程...................32 2-3 尋找較小粒徑之高鈣磷比磷灰石研究...............32 2-4 磷灰石應用於骨水泥之研究.......................34 2-4-1 直接使用磷灰石製備骨水泥.......................34 2-5 觀察經由不同持溫時間對於燒結多鈣型磷灰石之影響 35 2-6 研究不同持溫時間以及不同研磨程度對於抗壓強度之 影響...........................................35 2-7 添加阻斷劑於化學析出過程中,對於析出物之影響...36 2-8 添加阻斷劑於化學析出過程中,經由不同持溫時間燒 結對於燒多鈣型磷灰石之影響...................36 2-9 添加阻斷劑於化學析出過程中經由不同持溫時間燒結 後探討不同研磨程度對於抗壓強度之影響...........37 2-10 阻斷劑對於磷灰石經由不同燒溫度之影響.........38 2-11 添加氧化鈣於對實驗之骨水泥抗壓數值影響.........38 2-12 磷灰石粉末基本性質.............................39 2-12-1 X光繞射相分析..................................39 2-12-2 掃描式電子顯微鏡...............................39 2-12-3 傅立葉轉換紅外線光譜分析儀.....................40 2-12-4 穿透式電子顯微鏡...............................40 2-12-5 EDS分析........................................41 2-12-6 工作時間以及硬化時間測試.......................41 第三章 實驗結果與分析 3-1 尋找高鈣磷比之磷灰石研究.......................54 3-1-1 析出物之相分析.................................54 3-1-2 析出物之傅立葉轉換紅外線光譜分析...............54 3-1-3 析出物之EDS分析................................56 3-1-4 析出物之掃描式電子顯微鏡分析...................56 3-2 研究析出物是否可應用為骨水泥...................57 3-2-1 分別使用不同pH值硬化劑之研究...................57 3-3 觀察不同持溫時間對於燒結析出物之影響...........58 3-3-1 不同持溫時間燒結後產物之相分析.................58 3-3-2 不同持溫時間燒結後產物之傅立葉轉換紅外線光譜分 析.............................................58 3-3-3 不同持溫時間燒結且不同研磨程度產物之掃描式電子顯 微鏡分析.......................................59 3-3-4 不同持溫時間燒結且不同研磨程度產物之抗壓測試...60 3-3-5 不同持溫時間燒結且不同研磨程度產物抗壓後之相分 析.............................................61 3-3-6 不同持溫時間燒結且不同研磨程度產物抗壓之傅立葉 轉換紅外線光譜分析.............................61 3-4 經由添加不同阻斷劑於化學析出過程中,對於不同持溫 時間燒以及不同研磨程度對於抗壓強度的影響.....62 3-4-1 添加阻斷劑-S1..................................63 3-4-1-1 添加S1後析出物之相分析.........................63 3-4-1-2 析出物之EDS分析................................63 3-4-1-3 不同持溫時間燒結後產物之相分析.................63 3-4-1-4 不同持溫時間燒結後產物之傅立葉轉換紅外線光譜分 析.............................................64 3-4-1-5 不同持溫時間燒結且不同研磨程度產物之掃描式電子 顯微鏡分析.....................................66 3-4-1-6 不同持溫時間燒結且不同研磨程度產物之抗壓測試...67 3-4-1-7 不同持溫時間燒結且不同研磨程度產物經過抗壓後之 相分析.........................................67 3-4-1-8 不同持溫時間燒結且不同研磨程度產物經過抗壓後之 傅立葉轉換紅外線光譜分析.......................68 3-4-2 添加阻斷劑-S2..................................69 3-4-2-1 析出物之相分析.................................69 3-4-2-2 析出物之EDS分析................................70 3-4-2-3 不同持溫時間燒結後產物之相分析.................70 3-4-2-4 不同持溫時間燒結後產物之傅立葉轉換紅外線光譜分 析.............................................71 3-4-2-5 不同持溫時間燒結且不同研磨程度產物之掃描式電子顯 微鏡分析.......................................72 3-4-2-6 添加S2經由不同持溫時間燒結且不同研磨處理後之抗 壓測試.........................................73 3-4-2-7 不同持溫時間燒結且不同研磨程度產物之相分析.....74 3-4-2-8 不同持溫時間燒結且不同研磨程度產物之傅立葉轉換 紅外線光譜分析.................................74 3-5 阻斷劑對於磷灰石經由不同燒溫度之影響.........75 3-6 添加氧化鈣於對實驗之骨水泥抗壓數值影響.........76 第四章 結論..........................................113 第五章 參考文獻......................................115

    第五章 參考文獻
    Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler
    BO, Heughebaert JC, Nancollas GH, Yesinowski JP, Zawacki
    SJ. A calcium hydroxyapatite precipitated from an aqueous
    solution; an international multimethod analysis. J Crystal
    Growth 84 (1987), 512–532.
    Basso N, Heersche JNM. Characteristics of in vitro osteoblastic cell loading models. Bone, X1[2] (2002), 347~51.Review.
    Black J., Shalaby S.W. and LaBerge M., Biomaterials education:
    an academic viewpoint, J. Appl. Biomater., 3 (1992), 231~
    236.
    Boretos, J.W., Eden, M. Contemporary Biomaterials, Material and Host Response,Clinical Applications, New Technology and Legal Aspects. Noyes Publications, ParkRidge, NJ (1984),232~233.
    Brinker C.J., “Hydrosis and condensation of silicates:effect on structure”,Journal of Non-Crystalline Solids 100 (1998),31~50.
    Brown W, Chow L. Dental restorative cement pastes. US Patent No. 45184X1,1985.
    Blakeslee KC and Condrate RA, Vibration spectra of hydrother-
    mally prepared hydroxyapatites, J Amer Ceram Soc, 54 (1971), 559~63.
    Burny F., Donkerwolcke M. , Muster D.. Biomaterials education: A challenge for medicine and industry in the late 1990s. Materials Science and Engineering:A 199[1] (1995), 53~59.
    Cheng ZH, Yasukawa A, Kandori K and Ishikawa T, FT-IR study on incorporation of CO2 into calcium hydroxyapatite, J Chem Soc Faraday Trans, 94 (1998),1501~5,.
    Chickerur NS, Tung MS, Brown WE. A mechanism for incorporation
    of carbonate into apatite. Calcif Tissue Int 32 (1980),
    55~62.
    Chow LC. Development of self-setting calcium phosphate cements
    .J. Ceram. Soc. Jpn. 99 (1991), 954~964.
    Chow LC., Takagi S., Self-setting calcium phosphate cements, Mat. Res. Soc. Symp. 179 (1991), 3~9.
    Chow LC., Takagi S., Calcium phosphate cement hydroxyapatite precursor and methods for making and using the same,US patent 5695729.(1997).
    David H Kohn, Metals in medical applications, Current Opinion in Solid State & Materials Science 3 (1998), X19-316.
    Driessens F.C.M., Boltong M.G., de Maeyer E.A.P., Wenz R., Nies B., Planell J.A., “The Ca/P range of nanoapatitic calcium phosphate cement”, Biomaterials 23 (2002), 4011~4017.
    Elliot, J. C. (ed) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier, Amsterdam, 1994).
    Elwell D., Scheel H.J., “Crystal Growth from High-Temperature Solutions,” Academic Press, New York (1975), 150.
    Gross K.A., Chai CS, Kannangara GSK, Bin-Nissan B, Hanley L. “Thin hydroxyapatite coatings via sol-gel synthesis.” J. Mater.Sci.Mater.Med., 9[12] (1998), 839~843.
    Haldeman K, Moore J. Influence of a local excess of calcium and phosphorus on the healing of fractures. Arch. Surg., [29] (1934), 385~396.
    Hench L. L. , Bioactive Glas and Glass-Ceramic:A Prespective. CRC Handbook of bioactive Ceramics, I(1990), 3~4
    Jinawath S., Pongkao D., Suchanek W., Yoshimura M.,“Hydro-
    thermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate”, International J. Inorg. Mater., 3 (X201), 997~1001
    Jillavenkatesa A., Condrate R.A.,Sol-gel processing of hydroxyapatite. J Mater Sci, 33 (1998), 4111~4119.
    Joao F. Mano, Rui A. Sousa, Luciano F. Boesel, Nuno M. Neves, Rui L. Reis. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites science and technology 64 (X204), 789~817.
    Kay M.I., Young R.A., Posner A.S, “Crystal structure of hydroxyapatite”, Nature X24 (1964), X350~X352.
    Kuroda K, Ichino R, Okido M and Takai O, “Effects of ion concentration and pH on hydroxyapatite deposition from aqueous solution onto titanium by the thermal substrate method”, J Biomed Mater Res, 61 (2002), 354~9.
    LeGeros R.Z. “Calcium Phosphates in Oral Biology and Medic-
    ine”, Monographs in Oral Science, 15 (1991), 117~126.
    Lin Feng-Huei, Liao Chun-Jen, Chen Ko-Shao, Sun Jui-Sheng, Thermal reconstruction behavior of the quenched hydroxyla-
    patite powder during reheating in air, Materials Science and Engineering:C 13(X200), 97~X34.
    Liu D.M., Troczynski T., Tseng W.J., Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 22 (X201), 1721~17X1.
    Liu Jingbing, Ye Xiaoyue, Wang Hao, Zhu Mankang, Wang Bo, Yan Huiv, “The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method”, Ceramics International 29 (X203), 629~633.
    Maria Vallet-Regi, Jose Maria Gonzalez-Calbet. Calcium phos-
    phates as substitution of bone tissues. Progress in Solid State Chemistry 32 (X204), 1~31.
    Mathai Mathew, Shozo Takagi, “Structure of biological Min-
    erals in dental research”, J. Res. Natl. Inst. Stand. Technol. X36 (X201), X335~X344
    Meyer JL, Fowler BO. Lattice defects in nonstoichiometric calcium hydroxylapatites. A chemical approach. Inorg Chem
    21 (1982), X129~X135.
    Montel G. Physical chemistry of phosphate with the apatite
    structure. Bull Soc Chim France (1968), 1693~1700.
    Nancollas GH. Biomineralization. In: Mann S, Webb J, Williams RJP, editors. Chemical and biochemical perspectives. VCH; (1989), 157.
    Nelson DGA, Featherstone JDB. Preparation, analysis, and char-
    acterization of carbonated apatites. Calcif Tissue Int
    34 (1982), 69~81.
    Shusheng Jiang, Gregory C. Stangle, Vasantha R.W. Amarakoon, and Walter A. Schulze, Synthesis of yttriz-stabilized zirconia nanoparticles by decomposition of metal nitrates coated on carbon powder, J Mater Res 11[9] (1996), 2318~2324.
    Prashant N. Kumta, Charles Sfeir, Dong-Hyun Lee, Dana Olton and Daiwon Choi. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characteriz-
    eation. Acta Biomaterialia, 1 [1] (X205), 65~83.
    Robert E. Reed-Hill, Reza Abbaschian,Physical Metallurgy Principles third edition.(1991).
    Saeri M.R., Afshar A., Ghorbani M., Ehsani N.,Sorrell C.C. , The wet precipitation process of hydroxyapatite, Materials Letters 57 (X203), 4064~4069.
    Sargin Y., Kizilyalli M., Telli C., Guler H., A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement:X-ray powder diffraction and IR studies, Journal of The European Ceramic Society 17 (1997), 963~970.
    Sergey V. Dorozhkin and Matthias Epple, Biological and Medical Significance of Calcium Phosphates, Angew. Chem. Int. Ed 41 (2002), 31X1~36.
    Shackeford, J.F., Intoduction to Materials Science for Engine-
    ers, Forth Edition,Prentice Hall,Upper Saddle River,New Jersey.(1996).
    Slosarczky A, Paluszkiewicz C, Gawlicki M and Paszkiewicz Z, The FTIR spectroscopy and QXRD studies of calcium phosphate bases materials produced from the powder precursors with different Ca/P ratios, Ceram Intern, 23 (1997), 297~X.
    Sonoda K., Furuzono T., Walsh D., Sato K., Tanaka J., Influence of emulsion on crystal growth of hydroxyapatite, Solid State Ionics 151 (2002), 321~327.
    Tagai H, Aoki H. In: Hastings GW, Williams DF, editors. Preparation of synthetic hydroxyapatite and sintering of apatite ceramics; mechanical properties of biomaterials. John Wiley &Sons, Ltd., (1987), 213.
    Veis A, editor. The chemistry and biology of mineralized connective tissues. Elsevier, (1981), 618.
    Verhoeven J.D., Fundamentals of physical metallurgy, First edition (1975), 2X2~227.
    Williams D.F., Definitions in Biomaterials, Elsevier, Amsterdam,(1987).
    William J. Dawson, “Hydrothermal Synthesis of Advanced Cer-
    amic Powders,” Ceram. Bull., 67[X3] (1998), 1673~1678.
    Yamashita K and Kanazawa T, Hydroxyapatite, in Inorganic Phosphate Materials, Materials Science Monograph, 52 (1989), X1.
    汪建民主編,陶瓷技術手冊(上)、(下),中華民國粉末冶金協會,(1984)。
    黃聖哲,SiO2 對奈米級錳鋅鐵氧磁體粉末燒結及燒結體性質之影響,成功大學碩士論文, (2002)。
    張立得、牟季美,奈米材料和奈米結構,滄海書局,(2002)。
    稻垣道夫、大谷杉郎、大谷朝男共著, 賴耿陽譯著,碳材料碳纖維工學, (1994)。
    劉思謙,磷酸鈣陶瓷與其高分子奈米複合材料在化學析出合成的相發展操控與結構特性,國立交通大學材料科學與工程學研究所博士論文,(X203)。
    鄭文賢,磷酸鈣粉末製程及性質研究,國立成功大學材料科學及工程研究所碩士論文,(X204)。
    鄭紳江,硼引發物理化學效應之人工S2應用研究,國立臺灣大學材料科學與工程學研究所碩士論文,(2002)。
    經濟部陶瓷技術手冊chap.31。

    下載圖示 校內:2010-07-25公開
    校外:2015-07-25公開
    QR CODE