| 研究生: |
蕭苡烜 Hsiao, Yi-Hsuan |
|---|---|
| 論文名稱: |
結合建築資訊模型及混合實境建構室內油漆工程之人機協作系統 Employing BIM and MR to Develop the Human-Robot Collaboration System for Interior Painting |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 建築資訊模型 、混合實境 、人機協作 、數位雙生 、營建自動化 |
| 外文關鍵詞: | BIM, Mixed Reality, Human Robot Collaboration, Digital Twin, Automated Construction |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
營造產業缺工問題日益嚴重,以油漆工程為例,施工人員的技術需求高,上下攀爬進行施工的過程不僅耗費體力且具有跌落之風險,機器人之引入雖可改善營建工地缺工及環境惡劣的問題,然而機器人較適合於穩定環境進行重複性作業,營建工地施工內容高度客製化且環境不斷變動皆不利於機器人的使用。隨著全球進入工業4.0時代,人機協作、虛實交互、物聯網等為智慧製造的關鍵技術,其中協作型機器人可以達成靈活的動作規劃,減少作業流程的設置時間以達到彈性製造與產品客製化的目標,協作型機器人雖然可以應用至營建工地,然而當前協作方式的使用效率仍然不足,因此國內外研究開始利用建築資訊模型 (Building Information Modeling, BIM) 所具有的建築3D幾何資訊輔助機器人的任務規劃,以及利用混合實境技術 (Mixed Reality, MR) 的虛實互動能力作為新興的機器人協作媒介,但是BIM資訊無法直接應用於機器人系統,並且混合實境技術與工地機器人的結合也少有研究,如何結合上述技術滿足工地油漆機器人的協作需求仍是一大難題。
本研究為改善BIM資訊與機器人系統交互性不足以及當前機器人協作方式效率低落的問題,首先解析協作型工地油漆機器人作業流程所需資訊與操作需求,制定符合機器人系統需求的BIM至MR資料傳遞方法,接著使用機器人作業系統 (Robot Operating System, ROS) 建立油漆機器人控制系統,以此控制機器人硬體設備與作為機器人動作計算核心,並藉由網路協定建立機器人系統與MR環境的即時通訊連接,而後配合於MR環境開發的應用功能,建置結合BIM與MR的油漆人機協作系統,協作者可藉由虛實機器人的互動機制達成直覺且高效的機器人規劃控制,最終本研究將透過實體機器人油漆實驗進行系統效能的驗證,本研究人機協作系統可解決工地自動化的困境,並提升工地機器人應用的可行性。
The problem of labor shortage in the construction industry is becoming serious. Taking the interior painting as an example, the technical level for personnel is high. The process of climbing ladder to work not only exhausting but also has the risk of falling. Although the introduction of robots can solve the labor shortage and the problem of harsh environment. However, robots are more suitable for repetitive operations in a stable environment rather than in construction site. The highly customized work content and the dynamic environment go against the use of robots.
As the world enters the era of Industry 4.0, human-robot collaboration, virtual-real interaction, and the Internet of Things are the key technologies for smart manufacturing. Among them, collaborative robots can achieve flexible action planning and reduce the setup time of the operation process to achieve flexible manufacturing and product customization. Although collaborative robots can be applied to construction sites, the efficiency of the current collaborative methods is still insufficient. Therefore, domestic and foreign researches have begun to use the architectural 3D geometric information of Building Information Modeling (BIM) to assist the robot's development. Mission planning and the virtual-real interaction capability of mixed reality technology (MR) are used as an emerging robot collaboration medium, but BIM information cannot be directly applied to robot systems, and there is little research on the combination of mixed reality technology and construction robots. How to combine the above technologies to meet the collaborative needs of construction painting robots is still a big problem.
In order to improve the lack of interaction between BIM information and robot systems and the low efficiency of current robot collaboration methods, this research first analyzes the information and operational requirements of the collaborative construction painting robot operation process and formulates a BIM to MR data transfer method that meets the requirements of the robot system.
Then this research uses the Robot Operating System (ROS) to establish a painting robot control system, so as to control the robot hardware equipment and act as the core of the robot motion calculation and establish an instant communication connection between the robot system and the MR environment through network protocols. Then, with the application functions developed in the MR environment, a painting human-robot collaboration system combining BIM and MR is built. Collaborators can achieve intuitive efficient robot planning and robot control through the interaction mechanism of virtual and real robots. Finally, this research will use the physical robot painting experiments to verify the system efficiency. The human-robot collaboration system in this study can solve the dilemma of construction automation and improve the feasibility of construction robot applications.
英文文獻
[1] Ali, A. K., Lee, O. J. & Song, H. Generic design aided robotically facade pick and place in construction site dataset. Data in Brief, 31, 105933. 2020. https://doi.org/10.1016/J.DIB.2020.105933
[2] Asadi, E., Li, B. & Chen, I. M. Pictobot: A Cooperative Painting Robot for Interior Finishing of Industrial Developments. IEEE Robotics and Automation Magazine, 25(2), 82–94. 2018. https://doi.org/10.1109/MRA.2018.2816972
[3] Blum, H., Stiefel, J., Cadena, C., Siegwart, R. & Gawel, A. Precise Robot Localization in Architectural 3D Plans. 2020 http://arxiv.org/abs/2006.05137
[4] Cesareo Contreras). Advanced Construction Robotics Aims to Disrupt Construction Industry With TyBOT and IronBOT - Robotics 24/7. 2020. https://www.robotics247.com/article/advanced_construction_robotics_aims_to_disrupt_construction_industry_with_tybot_and_ironbot
[5] Chalhoub, J. & Ayer, S. K. Using Mixed Reality for electrical construction design communication. Automation in Construction, 86, 1–10. 2018. https://doi.org/10.1016/J.AUTCON.2017.10.028
[6] Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V., Rodríguez Tsouroukdissian, A., Bohren, J., Coleman, D., Magyar, B., Raiola, G., Lüdtke, M. & Fernandez Perdomo, E. ros_control: A generic and simple control framework for ROS. The Journal of Open Source Software, 2(20), 456. 2017. https://doi.org/10.21105/JOSS.00456
[7] Ding, L., Jiang, W., Zhou, Y., Zhou, C. & Liu, S. BIM-based task-level planning for robotic brick assembly through image-based 3D modeling. Advanced Engineering Informatics, 43, 100993. 2020. https://doi.org/10.1016/J.AEI.2019.100993
[8] Dörfler, K., Sandy, T., Giftthaler, M., Gramazio, F., Kohler, M. & Buchli, J. Mobile Robotic Brickwork. Robotic Fabrication in Architecture, Art and Design 2016, 204–217. 2016. https://doi.org/10.1007/978-3-319-26378-6_15
[9] Follini, C., Magnago, V., Freitag, K., Terzer, M., Marcher, C., Riedl, M., Giusti, A. & Matt, D. T. BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance. Robotics 2021, Vol. 10, Page 2, 10(1), 2. 2020. https://doi.org/10.3390/ROBOTICS10010002
[10] Gharbia, M., Chang-Richards, A., Lu, Y., Zhong, R. Y. & Li, H. Robotic technologies for on-site building construction: A systematic review. Journal of Building Engineering, 32, 101584. 2020. https://doi.org/10.1016/J.JOBE.2020.101584
[11] Giusti, A., Magnago, V., Siegele, D., Terzer, M., Follini, C., Garbin, S., Marcher, C., Steiner, D., Schweigkofler, A. & Riedl, M. BALTO: A BIM-Integrated Mobile Robot Manipulator for Precise and Autonomous Disinfection in Buildings against COVID-19. Undefined, 2021-August, 1730–1737. 2021. https://doi.org/10.1109/CASE49439.2021.9551635
[12] Hietanen, A., Pieters, R., Lanz, M., Latokartano, J. & Kämäräinen, J. K. AR-based interaction for human-robot collaborative manufacturing. Robotics and Computer-Integrated Manufacturing, 63, 101891. 2020. https://doi.org/10.1016/J.RCIM.2019.101891
[13] Ilian Bonev. What are singularities in a six-axis robot arm? (2019, August 27). https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm
[14] Jovanović, M., Raković, M., Tepavčević, B., Borovac, B. & Nikolić, M. Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels. Automation in Construction, 74, 28–38. 2017. https://doi.org/10.1016/J.AUTCON.2016.11.003
[15] Kahane, B. & Rosenfeld, Y. Balancing human-and-robot integration in building tasks. Computer-Aided Civil and Infrastructure Engineering, 19(6), 393–410. 2004. https://doi.org/10.1111/J.1467-8667.2004.00365.X
[16] Kim, S., Peavy, M., Huang, P. C. & Kim, K. Development of BIM-integrated construction robot task planning and simulation system. Automation in Construction, 127, 103720. 2021. https://doi.org/10.1016/J.AUTCON.2021.103720
[17] Liang, C. J., Kamat, V. R. & Menassa, C. C. Teaching robots to perform quasi-repetitive construction tasks through human demonstration. Automation in Construction, 120, 103370. 2020. https://doi.org/10.1016/J.AUTCON.2020.103370
[18] Lotsaris, K., Fousekis, N., Koukas, S., Aivaliotis, S., Kousi, N., Michalos, G. & Makris, S. Augmented Reality (AR) based framework for supporting human workers in flexible manufacturing. Procedia CIRP, 96, 301–306. 2020. https://doi.org/10.1016/J.PROCIR.2021.01.091
[19] Ma, X., Mao, C. & Liu, G. Can robots replace human beings? —Assessment on the developmental potential of construction robot. Journal of Building Engineering, 56, 104727. 2022. https://doi.org/10.1016/J.JOBE.2022.104727
[20] Madni, A. M., Madni, C. C. & Lucero, S. D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, Vol. 7, Page 7, 7(1), 7. 2019. https://doi.org/10.3390/SYSTEMS7010007
[21] Madsen, A. The SAM100: Analyzing Labor Productivity. Construction Management. 2019. https://digitalcommons.calpoly.edu/cmsp/243
[22] Matulis, M. & Harvey, C. A robot arm digital twin utilising reinforcement learning. Computers and Graphics (Pergamon), 95, 106–114. 2021. https://doi.org/10.1016/j.cag.2021.01.011
[23] Meschini, S., di Milano, P., Iturralde, K., Linner, T. & Bock, T. Novel applications offered by integration of robotic tools in BIM-based design workflow for automation in construction processes Assistive Robotic Micro-Rooms for Independent Living View project Ambient Assisted Living View project. 2016. https://www.researchgate.net/publication/332471136
[24] Milgram, P. A TAXONOMY OF MIXED REALITY VISUAL DISPLAYS. IEICE Transactions on Information Systems, 12. 1994. http://vered.rose.utoronto.ca/people/paul_dir/IEICE94/ieice.html
[25] Mohamed T. Sorour, Mohamed A. Abdellatif, Ahmed A. Ramadan & Ahmed A. Abo-Ismail. Development of Roller-Based Interior Wall Painting botRo. World Academy of Science, Engineering and Technology 59. 2011. https://www.researchgate.net/publication/235588999_Development_of_Roller-Based_Interior_Wall_Painting_Robot
[26] MoveIt Motion Planning Framework. (n.d.). Retrieved July 28, 2022, from https://moveit.ros.org/
[27] MX3D | MX3D Bridge. (n.d.). Retrieved July 7, 2022, from https://mx3d.com/industries/infrastructure/mx3d-bridge/
[28] Ravichandar, H., Polydoros, A. S., Chernova, S. & Billard, A. Recent Advances in Robot Learning from Demonstration. Https://Doi.Org/10.1146/Annurev-Control-100819-063206, 3, 297–330. 2020. https://doi.org/10.1146/ANNUREV-CONTROL-100819-063206
[29] Tan, Y., Li, S., Liu, H., Chen, P. & Zhou, Z. Automatic inspection data collection of building surface based on BIM and UAV. Automation in Construction, 131, 103881. 2021. https://doi.org/10.1016/J.AUTCON.2021.103881
[30] urdf - ROS Wiki. (n.d.). Retrieved July 28, 2022, from http://wiki.ros.org/urdf
[31] Wang, L., Liu, S., Liu, H. & Wang, X. V. Overview of human-robot collaboration in manufacturing. Lecture Notes in Mechanical Engineering, 15–58. 2020. https://doi.org/10.1007/978-3-030-46212-3_2/FIGURES/19
[32] Wong Chong, O., Zhang, J., Voyles, R. M. & Min, B. C. BIM-based simulation of construction robotics in the assembly process of wood frames. Automation in Construction, 137, 104194. 2022. https://doi.org/10.1016/J.AUTCON.2022.104194
[33] Zhou, T., Zhu, Q. & Du, J. Intuitive robot teleoperation for civil engineering operations with virtual reality and deep learning scene reconstruction. Advanced Engineering Informatics, 46, 101170. 2020. https://doi.org/10.1016/J.AEI.2020.101170
中文文獻
[1] 林煒埕, “建築資訊模型及混合實境建構輔助機電工程施工之協同系統”, 碩士論文, 國立成功大學土木工程學研究所, 台南市, 2021.
[2] 馬哲儒, 張鑑祥, 許梅娟, “工業4.0時代來臨”, 中華科技部, 科學發展544期, 2018.
[3] 吳淑華, “產業機器人的技術與應用”, 中華科技部, 科學發展558期, 2019.
[4] 劉家翎, “發展適用於工程專案管理之BIM 智慧模組–以裝修工程為例”, 碩士論文, 國立成功大學土木工程學研究所, 台南市, 2020.
[5] 莊大軍, “開發以混合實境為基礎之工程作業系統”, 碩士論文, 國立成功大學土木工程學研究所, 台南市, 2020.
[6] 林晉瑩, “機械手臂數位製造及構築之應用–以金屬加工為例”, 碩士論文, 淡江大學建築學系, 2018.
[7] 鄭基立, “以機械手臂進行仿生構築之流程與工法研究”, 碩士論文, 國立交通大學建築研究所, 2016.
校內:2027-08-23公開