簡易檢索 / 詳目顯示

研究生: 王唯侖
Wang, Wei-Lun
論文名稱: 氮化鋁/環氧樹脂複合材料之流變性及熱傳導性質探討
Rheology Behavior and Thermal Conductivity of Aluminum Nitride/Epoxy Composites
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 氮化鋁氮化鋁/環氧樹脂複合材料流變學熱傳導值
外文關鍵詞: aluminum nitride, aluminum nitride/epoxy composite material, rheology, thermal conductivity
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究係探討兩大部分,第一部分為氮化鋁粉體於液態環氧樹脂中之流變性探討,第二部分為不同粒徑及粒徑分佈之氮化鋁製成的複合材料,並探討其熱傳導值及流變性質。在氮化鋁粉體於液態環氧樹脂之流動性探討中,主要是將不同粒徑分佈之氮化鋁粉體與液態環氧樹脂混合懸浮液流變性問題,使用兩種方式檢測,第一種為垂流法,觀察懸浮液垂流情形判斷流動程度,第二種為流變儀檢測方式,藉由量測懸浮液之轉存模量(storage modulus)與應力(strain)關係找出線性黏彈性區間(linear viscoelastic region);此外,亦可判斷不同角頻率(angular frequency)與懸浮液之轉存模量(storage modulus)或損耗模量(loss modulus)關係,判定流動情形。另外,再使用剪切速率與懸浮液黏度測定時,於高剪切速率時,可將團聚打散降低黏度,但若小粉體量過多反而造成黏度之提升。若氮化鋁粉體粒徑單一,則易因缺少小粒徑粉體填補粉體之間的空隙,造成流動性下降,若添加適量小粒徑粉體,填補大粉體間的空隙,使得黏度下降。第二部分則使用粒徑分佈不同之氮化鋁粉體,製作成環氧樹脂複合材料,探討複合材料之熱傳導值及流動性影響,若使用粒徑分佈寬之氮化鋁(sample1)時,則能更好的使氮化鋁/環氧樹脂複合材料有效的填充於模具內,達到97.9%之填充程度,若是小粒徑粉體略多(sample2)將導致樹脂量不足以填補空隙,造成孔隙產生,降低填充程度至96.2%,填充程度之差異可使熱傳導值由4.0W/m/K下降至2.48W/m/K。市售二氧化矽/環氧樹脂複合材料之流動性於80℃下,轉動所需力矩較使用二氧化矽與六方晶氮化硼之複合材料低,由於六方晶氮化硼之形狀,垂直於剪切力之方向轉動力矩,造成流動困難形成阻礙。此外,比較不同粒徑分佈之氮化鋁複合材料,發現若是添加少許小粒徑粉體,可使粒徑分佈較廣,並改善流動性。

    This research is divided into two sections. The first section is mainly discussing the flowability of aluminum nitride powder blending in the liquid epoxy. The second section is manufacturing epoxy molding compound using different particle size distribution of aluminum nitride powder to explore the thermal conductivity and rheology. The flowability test of aluminum nitride is mainly discussing how the particle size distribution affects the flowability test. There are two methods to measure the flowability. The first method is the dripping consistency test. By observing the dripping length to distinguish the flowability. The second method is using the rheometer to measure rheology behavior. Using the relation between storage modulus and strain to find the linear viscoelastic region. Besides, rheology behavior can be obtained by the relation between angular frequency and storage modulus or loss modulus. Furthermore, it is useful to observe the rheology behavior through shear rate versus viscosity. When the shear rate is high enough, it can break the agglomeration lowering the viscosity. However, when the small particle is too much for the epoxy to contain, it can enhance the viscosity. If the particle size distribution is narrow, the flowability is decreased due to the vacancy between the particle. This phenomenon can be resolved by adding adequate small aluminum nitride powder to fill the vacancy among particles. The second part is manufacturing composite material by the different particle size distribution of aluminum nitride powder to discuss the thermal conductivity and the rheology behavior under the same filler volume percent addition. If using broad size distribution (sample1) of aluminum nitride to fill the mold, it is observed that the bulk density is higher, hence achieving 97.9% of packing extent. If the small particle is too much (sample2) it could lead to a shortage of epoxy. The voids increase with the shortage of epoxy, which could decrease the packing extent to 96.2%. This packing extent difference could reduce the thermal conductivity from 4.0W/m/K to 2.48 W/m/K. The oscillation torque to shear the silica-based composite material is much less than the composite materials using the combination of h-BN and silica. Since the structure of hexagonal boron nitride could hinder the flow. Especially when the h-BN is vertical to the direction of shear rate. Besides, comparing the result of composite materials using aluminum nitride (sample4, sample8)as filler, the flowability could be improved by adding a little small particle of aluminum nitride to broaden the size distribution.

    目錄 摘要 II Abstract IV Extended Abstract VI Summary VI Introduction VIII Materials and methods IX Result and discussion XII Conclusions XIX 致謝 XXI 第一章 緒論 1 1-1 半導體產業鏈簡介 1 1-2 半導體封裝的功能 2 1-3 半導體封裝的分類 3 1-5 陶瓷材料簡介 10 1-6 氮化鋁性質探討 11 第二章 基礎理論與文獻回顧 15 2-1 影響懸浮液流動性之相關原理 15 2-2 流變儀之相關應用 20 2-3 氮化鋁與環氧樹脂之流變性質探討 22 2-4 氮化鋁與環氧樹脂複合材料之熱傳導值與流動性探討 24 2-5 研究動機 34 第三章 實驗室裝置與藥品 35 3-1. 分析儀器: 35 3-1-1 粒徑分析儀 35 3-1-2 比表面積分析儀 36 3-1-3 熱重分析儀 Thermal Gravimetric Analysis 38 3-1-4 高解析場發射掃描式電子顯微鏡與能量分散光譜儀及能量分散光譜儀 39 3-1-5 迴旋式磁流變分析儀 40 3-1-6 熱傳導量測儀 41 3-1-7 試片密度及孔隙度量測裝置 43 3-1-8 X光繞射分析儀 44 3-1-9 傅立葉轉換式紅外線光譜儀 45 3-2 實驗設備及器材 46 3-2-1 電子天秤 46 3-2-2 超音波震盪清洗器 46 3-2-3 電磁加熱攪拌器 46 3-2-4 真空烘箱 47 3-2-5 熱壓成型機及可程式控制器 47 3-2-6 拋光機 47 3-2-7 箱型高溫爐 48 3-2-8 手動油壓機 48 3-3 藥品 48 第四章 實驗方法 50 4.1 氮化鋁與液態環氧樹脂流動性探討 50 4-1-1 改質氮化鋁 50 4-1-2 垂流法測試 50 4-1-3 流變儀檢測 51 4.2 氮化鋁與環氧樹脂複合材料 52 4.2.1 樹脂複合材料製備與熱傳導值檢測 53 第五章 結果與討論 56 5-1. 無機粉體分析 56 5.1.1 氮化鋁粉體分析及3號改質劑探討 56 5.1.2 二氧化矽與氮化硼粉體分析 66 5.2 氮化鋁/液態環氧樹脂垂流法流動性檢驗 70 5.3 氮化鋁/液態環氧樹脂流變儀流動性檢驗 73 5-3-1 氮化鋁/液態環氧樹脂懸浮液之SEM樣品分析 73 5-3-2 氮化鋁/液態環氧樹脂懸浮液之流變儀樣品分析 75 5.4 氮化鋁/環氧樹脂複合材料之熱傳導值並與實驗室高熱傳導值配方熱傳導值比較 83 5-4-1 實驗室高熱傳導值配方熱傳導值 83 5-4-2 氮化鋁/環氧樹脂複合材料之熱傳導值 88 5-4-3 使用相同氮化鋁於液態環氧樹脂與製成環氧樹脂複合材料之關係 96 5.5 氮化鋁/環氧樹脂複合材料之流動性並與市售環氧樹脂複合材及實驗室高熱傳導值配方流動性比較 100 5-5-1 市售環氧樹脂複合材與實驗室高熱傳導值配方流動性比較 100 5-5-2 氮化鋁/環氧樹脂複合材料之流動性 103 第六章 結論 108 第七章 參考文獻 112

    1. 產業價值鏈資訊平台網(http://ic.tpex.org.tw/)
    2. 林光隆,「多元的半導體複合材料. 科學發展專題報導」,第486期, 第30-33頁, 2013年6月.
    3. 林益生、許蓁容、何宗漢、伍玉真、鄧希哲,「環氧成型模料對構裝後晶片可靠度的影響」,工程科技與教育學刊第7卷第4期, 第532-545頁2010年10月.
    4. Su, C. C. Wei, C. H. Li, B. C. Thermal and Cure Kinetics of Epoxy Molding Compounds Cured with Thermal Latency Accelerators. Advances in Materials Science and Engineering, 9, 2013.
    5. Zhang, J. X. Cheng, H. Chen, Y. Z. Uddin, A. Yuan, S. Geng, S. J. Zhang, S. Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surface & Coatings Technology, 198, 68 -73, 2005.
    6. LED的散熱管理,昕煒達科技有限公司(http://www.new-wonder.com.tw/?led%E7%9A%84%E6%95%A3%E7%86%B1%E7%AE%A1%E7%90%86,42)
    7. Kalyon, D. M. Aktas, S. Factors Affecting the Rheology and Processability of Highly Filled Suspensions. Annual Review of Chemical and Biomolecular Engineering. 5, 2014.
    8. Ancey, C. Jorrot, H. Yield stress for particle suspensions within a clay dispersion, Journal of Rheology, 45, 297-319, 2001
    9. Ancey, C. Role of lubricated contacts in concentrated polydisperse suspensions, Journal of Rheology, 45, 1421-1439, 2001
    10. An, Z. Q. Zhang, Y. L. Li, Q. Wang, H. R. Guo, Z. C. Zhu, J. Effect of particle shape on the apparent viscosity of liquid–solid suspensions. Powder Technology. 328, 199-206, 2018.
    11. Zheng, M. T. Dong, H. W. Xiao, Y. Liu, S. T. Hu, H. Liang, Y. R. Sun, L. Y. Liu, Y. L. Facile one-step and high-yield synthesis of few layered and hierarchically porous boron nitride nanosheets. Rsc Advances. 6, 45402-45409, 2016.
    12. Behzadfar, E. Abdolrasouli, M. H. Sharif, F. Nazockdast, H. Effect of solid loading and aggregate size on the rheological behavior of PDMS/Calcium Carbonate suspensions. Brazilian Journal of Chemical Engineering, 26, 713-721, 2009.
    13. Lewis, J. A. Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 83(10),2341–59,2000.
    14. BASF, little helpers love great achievements Practical Guide to Rheology Modifiers. 2013
    15. Mewis, J. Wagner, N.J., Colloidal Suspension Rheology. Cambridge University Press, 2012
    16. Bae, J. W. Kim, W. Cho, S. H. Lee, S. H. The Properties of AIN-Filled Epoxy Molding Compounds by the Effects of Filler Size Distribution. Journal of Materials Science, 2000, 35(23), 5907-5913.
    17. Mai, V. D. Lee, D. I. Park, J. H. Lee, D. S. Rheological Properties and Thermal Conductivity of Epoxy Resins Filled with a Mixture of Alumina and Boron Nitride, Polymers, 11(4), 11, 2019.
    18. Gebrehiwot, S. Manufacturing and Rheological Analysis of Spiral Flow Test Piece. Degree Thesis Plastics Technology, 2014
    19. Linec, M. Music, B. The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds, Materials, 12(11), 11, 2019
    20. Rheology Theory and Applications. TAINSTRUMENTS. 2019
    21. Thomas G. Mezger. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers. Vincentz Network GmbH & Co KG, 2006
    22. Olhero, S. M. Ferreira, J. M. F. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology, 139, 69-75, 2004
    23. 魏立玄,高導熱環氧樹脂模封材料開發;國立成功大學碩士論文, 2018.
    24. Wu, C. Y. Armstrong, B. Vlachos, N. Characterization of Powder Flowability for Die Filling. Particulate Science and Technology. 30(4), 378-389, 2012
    25. 林正雄,使用氮化鋁及氮化硼填充以提升環氧樹脂熱傳導性之研究;國立成功大學碩士論文,2017
    26. Sichel, E. K. Miller, R. E. Abrahams, M. S. Buiocchi, C. J. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B.13(10), 4607-4611, 1976
    27. Rueda, M. M. Auscher, M. C. Fulchiron, R. Perie, T. Martin, G. Sonntag, P. Cassagnau, P. Rheology and applications of highly filled polymers: A review of current understanding. Progress in Polymer Science. 66, 22-53, 2017
    28. Nicolas Roussel. Understanding the Rheology of Concrete. Woodhead Publishing, 2012

    無法下載圖示 校內:2025-01-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE