| 研究生: |
張晉碩 Chang, Chin-Shuo |
|---|---|
| 論文名稱: |
嗜甲烷菌甲烷單加氧黴次單元B之點突變性質探討 Site-directed Mutagenesis Study of Subunit B in Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath) |
| 指導教授: |
俞聖法
Yu, Sheng-Fa |
| 共同指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 嗜甲烷菌 、西方墨點法 、定點突變 、微量金屬定量 |
| 外文關鍵詞: | Membrane protein, particulate methane monooxygenase (pMMO), Methylococcus capsulatus (Bath), Escherichia coli, copper homeostasis |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從嗜甲烷菌Methylcoccus capsulatus(Bath)中分離的微粒型甲烷單加氧酶次單元B,在過去的研究中證實了他與還原態的銅離子有著高度的親合力,但在文獻中根據現有的結晶結構中,只包含三個銅離子。我們認為在微粒型甲烷單加氧酶次單元B上,擁有著E-cluster扮演著傳遞電子的角色,因此探討銅離子與該暴露水層蛋白質間親和鍵結能力以及正確定出銅離子與蛋白質之間的量是很重要的議題。
本篇論文的重點環繞在定點突變及突變後的銅離子差異,我們利用基因工程技術,將微粒型甲烷單加氧酶次單元B透過重組的方式達到有效純化蛋白質的效果;接著利用西方墨點法,透過抗體與MBP蛋白專一性,將其中蛋白質有效的定出內含濃度,並加上ICP-OES之精準的微量金屬定量,計算出蛋白質與銅離子的實際含量;又使用X光吸收光譜,仰賴其靈敏性,相對定量出蛋白質中銅離子之比例;將西方墨點法之精準蛋白質濃度與ICP-OES高準確微量金屬定量再加上X光吸收光譜之靈敏金屬比例分析,計算出互相吻合之定點突變蛋白質銅離子含量。
最後將定點突變蛋白質膜與原始蛋白質膜以及純化後的蛋白質做互相比較,歸納出定點突變與原始蛋白質對於其中內含銅離子的鍵結能力以及其數目多寡的區別。
The PmoB subunit of pMMO from Methylococcus capsulatus (Bath) exhibits strong affinity towards CuI. The C-terminal aqueous sub-domain of PmoB is capable of sequestering ca. 10 reduced coppers, and it has been proposed that these CuI serve as a reservoir of reducing equivalents for methane oxidation in the holo enzyme. To confirm the high copper affinity in the full subunit, we have translocated and over-expressed the PmoB fused with the maltose-binding protein (MBP) into a number of E. coli strains. The recombinant PmoBs are verified by Western blotting of the antibodies against both MBP and copper-enriched PmoB. Using ICP-OES to confirm metal content. The recombinant PmoBs will show some information by X-ray absorption spectroscopy. When a bacterial strain BCRC®50305 tolerant against CuCl2 up to 3.1 mM is grown with the pmoB gene in 1.0 mM CuII, the E. coli behaves like M. capsulatus (Bath) cultured under high copper stress with abundant membrane accumulation and high CuI content. These results suggest that both M. capsulatus (Bath) and E. coli variants bear similar capacities for membrane production and incorporation of cellular CuI under copper stress. With control over copper homeostasis, the E. coli variants assist the pMMO B subunit to assemble into the cytoplasmic membrane and achieve maturation.
1. Balasubramanian, R., Smith, S. M., Rawat, S., Yatsunyk, L. A., Stemmler, T. L., and Rosenzweig, A. C. (2010) Oxidation of methane by a biological dicopper centre, Nature 465, 115-119.
2. Chan, S. I., and Yu, S. S.-F. (2008) Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: The case for a tricopper cluster, Acc. Chem. Res. 41, 969-979.
3. Hakemian, A. S., and Rosenzweig, A. C. (2007) The biochemistry of methane oxidation, Ann. Rev. Biochem. 76, 223-241.
4. Balasubramanian, R., and Rosenzweig, A. C. (2007) Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase, Acc. Chem. Res. 40, 573-580.
5. Chan, S. I., Chen, K. H.-C., Yu, S. S.-F., Chen, C.-L., and Kuo, S. S.-J. (2004) Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria, Biochemistry 43, 4421-4430.
6. Kopp, D. A., Lippard, S. J. (2002) Soluble methane monooxygenase: activation of dioxygen and methane, Curr. Opin. Chem. Biol. 6(5), 568-576.
7. Kao, W.-C., Chen, Y.-R., Yi, E.-C., Lee, H., Tian, Q., Wu, K.-M., Tsai, S.-F., Yu, S. S.-F., Chen, Y.-J., Aebersold, R., and Chan, S. I. (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath), J. Biol. Chem. 279, 51554-51560.
8. Lieberman, R. L., and Rosenzweig, A. C. (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane, Nature 434, 177-182.
9. Hakemian, A. S., Kondapalli, K. C., Telser, J., Hoffman, B. M., Stemmler, T. L., and Rosenzweig, A. C. (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b, Biochemistry 47, 6793-6801.
10. Smith, S. M., Rawat, S., Telser, J., Hoffman, B. M., Stemmler, T. L., and Rosenzweig, A. C. (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M, Biochemistry 50, 10231-10240.
11. Basu, P., Katterle, B., Andersson, K. K., and Dalton, H. (2003) The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein, Biochem. J. 369, 417-427.
12. Choi, D. W., Kunz, R. C., Boyd, E. S., Semrau, J. D., Antholine, W. E., Han, J. I., Zahn, J. A., Boyd, J. M., de la Mora, A. M., and DiSpirito, A. A. (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH : quinone oxidoreductase complex from Methylococcus capsulatus bath, J. Bacteriol. 185, 5755-5764.
13. Lieberman, R. L., Shrestha, D. B., Doan, P. E., Hoffman, B. M., Stemmler, T. L., and Rosenzweig, A. C. (2003) Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster, Proc. Natl. Acad. Sci. U. S. A. 100, 3820-3825.
14. Yu, S. S.-F., Chen, K. H.-C., Tseng, M. Y.-H., Wang, Y.-S., Tseng, C.-F., Chen, Y.-J., Huang, D.-S., and Chan, S. I. (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor, J. Bacteriol. 185, 5915-5924.
15. Choi, D. W., Antholine, W. E., Do, Y. S., Semrau, J. D., Kisting, C. J., Kunz, R. C., Campbell, D., Rao, V., Hartsel, S. C., and DiSpirito, A. A. (2005) Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath, Microbiology-Sgm 151, 3417-3426.
16. Chan, S. I., Wang, V. C.-C., Lai, J. C.-H., Yu, S. S.-F., Chen, P. P.-Y., Chen, K. H.-C., Chen, C.-L., and Chan, M. K. (2007) Redox potentiometry studies of particulate methane monooxygenase: Support for a trinuclear copper cluster active site, Angew. Chem. Int. Ed. 46, 1992-1994.
17. Martinho, M., Choi, D. W., DiSpirito, A. A., Antholine, W. E., Semrau, J. D., and Münck, E. (2007) Mösssbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus bath: Evidence for a diiron center, J. Am. Chem. Soc. 129, 15783-15785.
18. Yu, S. S.-F., Ji, C.-Z., Wu, Y.-P., Lee, T.-L., Lai, C.-H., Lin, S.-C., Yang, Z.-L., Wang, V. C.-C., Chen, K. H.-C., and Chan, S. I. (2007) The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monooxygenase in Methylococcus capsulatus (bath) is a Cu(I) sponge, Biochemistry 46, 13762-13774.
19. Chan, S. I., Nguyen, H. H. T., Chen, K. H. C., and Yu, S. S. F. (2011) Chapter twelve-Overexpression and purification of the particulate methane monooxygenase from Methylococcus capsulatus (Bath), Methods Enzymol. Volume 495, 177-193.
20. Culpepper, M. A., Cutsail, G. E., Hoffman, B. M., and Rosenzweig, A. C. (2012) Evidence for oxygen binding at the active site of particulate methane monooxygenase, J. Am. Chem. Soc. 134, 7640-7643.
21. Chen, P. P. Y., and Chan, S. I. (2006) Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase, J. Inorg. Biochem. 100, 801-809.
22. Chen, P. P.-Y., Yang, R. B.-G., Lee, J. C.-M., and Chan, S. I. (2007) Facile O-atom insertion into C-C and C-H bonds by a trinuclear copper complex designed to harness a singlet oxene, Proc. Natl. Acad. Sci. U. S. A. 104, 14570-14575.
23. Chan, S. I., Chien, C. Y.-C., Yu, C. S.-C., Nagababu, P., Maji, S., and Chen, P. P.-Y. (2012) Efficient catalytic oxidation of hydrocarbons mediated by tricopper clusters under mild conditions, J. Catal. 293, 186-194.
24. Maji, S., Lee, J. C. M., Lu, Y.-J., Chen, C.-L., Hung, M.-C., Chen, P. P. Y., Yu, S. S. F., and Chan, S. I. (2012) Dioxygen activation of a trinuclear CuICuICuI cluster capable of mediating facile oxidation of organic substrates: Competition between O-atom transfer and abortive intercomplex reduction, Chem Eur. J. 18, 3955-3968.
25. Nguyen, H.-H. T., Nakagawa, K. H., Hedman, B., Elliott, S. J., Lidstrom, M. E., Hodgson, K. O., and Chan, S. I. (1996) X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications, J. Am. Chem. Soc. 118, 12766-12776.
26. Nguyen, H.-H. T., Elliott, S. J., Yip, J. H. K., and Chan, S. I. (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme - Isolation and characterization, J. Biol. Chem. 273, 7957-7966.
27. Shiemke, A. K., Cook, S. A., Miley, T., and Singleton, P. (1995) Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron-donors, Arch. Biochem. Biophy. 321, 421-428.
28. Cohen, J., Arkhipov, A., Braun, R., and Schulten, K. (2006) Imaging the migration pathways for O-2, CO, NO, and Xe inside myoglobin, Biophys. J. 91, 1844-1857.
29. Winter, M. B., Herzik, M. A., Kuriyan, J., and Marletta, M. A. (2011) Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain, Proc. Natl. Acad. Sci. U. S. A. 108, E881-E889.
30. McCormick, M. S., and Lippard, S. J. (2011) Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1, Biochemistry 50, 11058-11069.
31. Ng, K.-Y., Tu, L.-C., Wang, Y.-S., Chan, S. I., and Yu, S. S.-F. (2008) Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (bath) by variable stereoselective alkane hydroxylation and olefin epoxidation, ChemBioChem 9, 1116-1123.
32. Chen, K. H.-C., Chen, C.-L., Tseng, C.-F., Yu, S. S.-F., Ke, S.-C., Lee, J.-F., Nguyen, H.-H. T., Elliott, S. J., Alben, J. O., and Chan, S. I. (2004) The copper clusters in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath), J. Chin. Chem. Soc. 51, 1081-1098.
33. Robinson, N. J., and Winge, D. R. (2010) Copper metallochaperones, Ann. Rev. Biochem. 79, 537-562.
Osman, D., and Cavet, J. S. (2008) Copper homeostasis in bacteria, Adv. Appl. Microbiol. 65, 217-247.
34. Arechaga, I.; Miroux, B.; Karrasch, S.; Huijbregts, R.; Kruiift, B.D.; Runswick, M.J. ; Walker, J.E., Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F0 ATP synthase. FEBS lett. 2000,482 215-219
35. 王琢堅, Implications of the redox behavior of the copper clusters in the particulate methane monooxygenase on the methane hydroxylation mechanism. 國立台灣大學化學研究所碩士論文, 2005.
36. 林素卿, Reconstitution of membrane proteins or subunits for structural and functional studies. 國立台灣大學化學研究所博士論文, 2007
37. 郭博堯,全球石油危機的油價衝擊.財團法人國家政策研究發展基金會永續發展組研究報告,2003,1月
38. 郭博堯,全球化石能源危機時代與我國所面臨挑戰,財團法人國家政策研究發展基金會永續發展組研究報告,2002,12月
39. 程人俠譯,地球的能源.科學月刊,1973,7月,(43期).