簡易檢索 / 詳目顯示

研究生: 邱以欣
Chiu, I-Hsin
論文名稱: 使用協同式非正交多重存取技術之多小區VLC及RF混合系統中具服務品質考量的用戶配對及功率分配
User Pairing and Power Allocation with QoS Consideration in Multi-cell Hybrid VLC/RF Systems Using Cooperative NOMA
指導教授: 許靜芳
Hsu, Ching-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 61
中文關鍵詞: 可見光通訊射頻網路非正交多重接取用戶配對干擾消除功率分配協同式非正交多重接取能源效率
外文關鍵詞: Visible Light Communication (VLC), Radio Frequency (RF), Multiple Access (MA), Cooperative NOMA (Co-NOMA), User Pairing, ICI Mitigation, Power Allocation, Energy Efficiency
相關次數: 點閱:193下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前幾年因為疫情大爆發促使了物聯網設備需求大幅度成長,迫切增加支持廣泛連接並提供靈活頻譜服務的網絡結構的需求。為了滿足這一需求,研究人員在頻譜上找尋另外一種可用資源,有發展前景的可見光通訊,它可以同時提供照明以及通訊功能。可見光通訊不僅可以增加資料流的傳輸量,而且還顯著降低無線系統的功耗和相關碳足跡。本論文採用了一種在多蜂巢VLC及RF混合系統中,使用協同式非正交多重存取技術的新型傳輸框架,旨在提高整體系統的能源效率和降低中斷機率。儘管VLC提供前景廣闊的高速率數據傳輸,但位於AP覆蓋範圍邊緣的用戶仍面臨嚴重的干擾問題。因此我們提出了一種對用戶的新定義,目的在引入多個用戶間的合作,使不受干擾影響的用戶成為中繼點,協助傳送訊號至坐落在重疊區域的用戶,因為中繼點發射出的訊號是使用RF,與VLC頻代不同所以不會產生干擾,大大增進了頻譜效率。除此之外,在多蜂巢的架構下,探討選擇連接AP的問題,並考慮每個用戶的需求,進行資源分配,在傳輸功率的限制之下,盡可能地提升網路服務質量。
    最後,使用ns-3.25模擬工具來模擬我們的網路環境,模擬結果顯示我們提出的兩種方法在有效能源效率、中斷機率、總資料傳輸量以及執行時間上,比起傳統非正交多重接取技術皆有所改進。

    The COVID-19 pandemic has catalyzed a significant surge in IoT devices, underscoring the urgent necessity for network structures capable of supporting extensive connections and delivering flexible spectrum services. To address this need, Visible Light Communication (VLC) emerges as a promising solution, ingeniously merging illumination and communication functionalities. Not only does VLC offer the capacity for managing the increased traffic, but it also significantly reduces power consumption and the associated carbon footprint of wireless systems, further enhancing its appeal in the current context. This paper explores and assesses a novel transmission framework employing cooperative non-orthogonal multiple access (Co-NOMA) within hybrid VLC/radio-frequency (RF) systems, aiming to enhance overall system energy efficiency as well as outage probability. Although VLC offers promising high-data rate capabilities, users situated at the cell-edge grapple with significant interference issues in the multi-cell network. This work focus on a network architecture encompassing VLC Access Points (APs) and multiple strong and weak users, with a variable user distribution that redefines the notion of strong and weak users. The paper aims to optimize energy efficiency, achieved by collectively determining the pairings of strong-weak users, establishing the process of AP selection (which includes SSS and Non-Discriminative Strategy (NDS) for user to decide their respective AP), and configuring the power for each user message. All these measures adhere to constraints pertaining to user connectivity and transmission power. Subsequently, this paper proposes two methods, CQB and NCS, for pre-sorting weak users prior to initiating user pairing. These methods are compared with the Hungarian algorithm, and the results demonstrate that not only is the execution time reduced, but the overall performance is also improved. Finally, we introduce a residual power allocation under Quality of Service (QoS) consideration scheme. This strategy leads to the more effective use of network resources, resulting in enhanced overall network performance.

    摘要 I Abstract III 致謝 V Contents VI List of Figures IX List of Tables XI Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Concepts of VLC 4 2.2 Multiple Access Schemes in VLC 4 2.3 Co-NOMA in Hybrid VLC/RF Systems 5 Chapter 3 Related Work 7 3.1 Inter-cell Interference Mitigation scheme 7 3.2 The methods of Resource Allocation and User Processing 8 3.2.1 Power Allocation 8 3.2.2 User Pairing 9 3.3 Issues in CO-NOMA 11 Chapter 4 System Models 13 4.1 VLC Channel Model 13 4.2 Signaling and Signal to Interference and Noise Ratio 14 4.3 RF Channel Model and Energy Harvesting 16 4.4 Achievable Data Rate 17 Chapter 5 Proposed Schemes 19 5.1 Motivation 19 5.2 Notation 19 5.3 Problem Formulation 21 5.4 Overall Framework 22 5.5 Joint User Connection and AP Selection 23 5.5.1 Signal Strength Strategy (SSS) 23 5.5.2 Non-discriminative Strategy 26 5.6 Pre-sorting in weak UE 28 5.6.1 Channel and QoS Based (CQB) 28 5.6.2 Number of connectable strong UEs 30 5.7 Power Allocation 33 5.8 Time Complexity Analysis 37 5.8.1 Complexity Analysis of APS 37 5.8.2 Complexity Analysis of Pre-sorting 38 5.8.2 Complexity Analysis of PA 38 Chapter 6 Performance Evaluation 40 6.1 Parameter Setting 40 6.2 Performance Metrics 41 6.3 Simulation Results 43 6.3.1 Effects of the Number of UEs 43 6.3.2 Effects of Power Allocation 50 6.3.3 Effects of δ 52 6.3.4 Effects of AP Selection 53 Chapter 7 Conclusion 56 References 58

    [1] P. H. Pathak, X. Feng, P. Hu and P. Mohapatra, "Visible light communication networking and sensing: A survey potential and challenges", IEEE Commun. Surveys Tutorials, vol. 17, no. 4, pp. 2047-2077, 2015.
    [2] D. A. Basnayaka and H. Haas, "Hybrid RF and VLC systems: Improving user data rate performance of VLC systems", Proc. IEEE 81st Veh. Technol. Conf. (VTC Spring), pp. 1-5, May 2015
    [3] J. Armstrong, R. J. Green, and M. D. Higgins, “Comparison of three receiver designs for optical wireless communications using white LEDs,” IEEE Commun. Lett., vol. 16, no. 5, pp. 748–751, May 2012.
    [4] M. Obeed, H. Dahrouj, A. M. Salhab, A. Chaaban, S. A. Zummo and M.-S. Alouini, “Power allocation and link selection for multicell cooperative NOMA hybrid VLC/RF systems”, IEEE Commun. Lett., vol. 25, no. 2, pp. 560-564, Feb. 2021.
    [5] T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights”, IEEE Trans. Consum. Electron. 2004, 50, 100–107.
    [6] L. Grobe et al., "High-speed visible light communication systems", IEEE Commun. Mag., vol. 51, no. 12, pp. 60-66, 2013.
    [7] A. T. Hussein and J. M. H. Elmirghani, "10 Gbps mobile visible light communication system employing angle diversity imaging receivers and relay nodes", vol. 7, no. 8, pp. 718-735, 2015.
    [8] R. C. Kizilirmak, C. R. Rowell and M. Uysal, "Non-orthogonal multiple access (NOMA) for indoor visible light communications", 2015 4th International Workshop on Optical Wireless Communications (IWOW), pp. 98-101, 2015.
    [9] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, Feb. 2004.
    [10] Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, Aug. 2015.
    [11] M. Obeed, H. Dahrouj, A. M. Salhab, S. A. Zummo, and M.-S. Alouini,“User pairing, link selection and power allocation for cooperative NOMA hybrid VLC/RF systems,” 2019, arXiv:1908.10803.
    [12] C. Li, W. Jia, Q. Tao, and M. Sun, “Solar cell phone charger performance in indoor environment,” in Proc. IEEE 37th Annu. Northeast Bioengineering Conf. (NEBEC), Apr. 2011, pp. 1–2.
    [13] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997
    [14] H. Kim, et al., “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett., vol. 16, no. 4, pp. 526–529, 2012.
    [15] X. Zhang, Q. Gao, C. Gong, and Z. Xu, “User grouping and power allocation for NOMA visible light communication multi-cell networks,” IEEE Commun. Lett., vol. 21, no. 4, pp. 777-780, Apr. 2017.
    [16] H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photon. Technol. Lett., vol. 28, no. 1, pp. 51-54, Jan. 1, 2016.
    [17] M. W. Eltokhey, M. A. Khalighi, A. S. Ghazy and S. Hranilovic, "Hybrid NOMA and ZF pre-coding transmission for multi-cell VLC networks", IEEE Open J. Commun. Soc., vol. 1, pp. 513-526, 2020
    [18] L. Yin, W.O. Popoola, X. Wu and H. Haas, "Performance evaluation of non-orthogonal multiple access in visible light communication", IEEE Trans. Comm., vol. 64, no. 12, pp. 5162-5175, Dec. 2016.
    [19] Z. Ding, P. Fan and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions", IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6010-6023, Aug 2016.
    [20] C. Chen, S. Fu, X. Jian, M. Liu, X. Deng and Z. Ding, "NOMA for energy-efficient LiFi-enabled bidirectional IoT communication", IEEE Trans. Commun., vol. 69, no. 3, pp. 1693-1706, Mar. 2021.
    [21] E. M. Almohimmah, M. T. Alresheedi, A. F. Abas and J. M. H. Elmirghani, "A simple user grouping and pairing scheme for non-orthogonal multiple access in VLC system", Proc. 20th Int. Conf. Transp. Opt. Netw. (ICTON), pp. 1-4, Sep. 2018.
    [22] M. B. Janjua, D. B. da Costa and H. Arslan, "User pairing and power allocation strategies for 3D VLC-NOMA systems", IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 866-870, Jun. 2020.
    [23] Q. Y. Liau and C. Y. Leow, "Successive user relaying in cooperative NOMA system", IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 921-924, Jun. 2019.
    [24] T. Rakia, H. C. Yang, F. Gebali, and M. S. Alouini, “Optimal design of dual-hop VLC/RF communication system with energy harvesting,” IEEE Commun. Lett., vol. 20, no. 10, pp. 1979–1982, October 2016.
    [25] Z. Ding, H. Dai and H. V. Poor, “Relay selection for cooperative NOMA”, IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 416-419, Aug. 2016.
    [26] M. A. Arfaoui et al., “CoMP-assisted NOMA and cooperative NOMA in indoor VLC cellular systems”, IEEE Trans. Commun., vol. 70, no. 9, pp. 6020-6034, Sep. 2022.
    [27] M. Alkhawatrah, “The Performance of Supervised Machine Learning Based Relay Selection in Cooperative NOMA”, IEEE Access, vol. 11, pp. 1570-1577, Dec. 2022.
    [28] C. Chen, W.-D. Zhong, H. Yang, and P. Du, “On the performance of MIMO-NOMA-based visible light communication systems”, IEEE Photon. Technol. Lett., vol. 30, no. 4, pp. 307–310, Feb. 15, 2018.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE