簡易檢索 / 詳目顯示

研究生: 陳冠年
Chen, Kuan-Nien
論文名稱: 多功能PM2.5過濾用之不織布
Multifunctional non-woven PM2.5 filter
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: 靜電紡絲微波水熱法聚丙烯腈二氧化鈦鈦酸鋇空氣過濾抗菌多功能
外文關鍵詞: Electrospinning, PAN, commercial TiO2(P25), TiO2 beads, filtration
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業發展迅速的時代下,大量的使用石油及煤碳做為能源及工業原料,造成工廠排放的廢氣以及交通運輸等汙染,而將許多有害的氣體與塵埃大量的送進了空氣中,這些有害的氣體與塵埃,不僅危害人體健康,更嚴重影響了生態環境。近年來,空氣污染對於人類健康以及環境污染問題日益嚴重,而當中最為嚴重的為PM2.5,為了對付細懸浮微粒,空氣過濾材會將孔徑縮小,但卻往往造成空氣流通的問題,導致在使用上的不方便;且在近幾年,為了更加提升過濾材料之過濾能力,除了過濾材料基材的研究之外,更致力於過濾層之改質,像是殺菌濾材以及帶電濾材,藉此提升過濾懸浮微粒之能力,還能增加濾材額外之功能,而非只有單純的過濾功能而已。
    本研究為利用靜電紡絲技術結合了微波水熱法製備出二氧化鈦/鈦酸鋇/聚丙烯腈奈米纖維濾材,因此本研究之實驗方法以及實驗結果與討論分為兩大部分,第一部分為利用微波水熱法製備二氧化鈦球珠(TiO2 beads)以及鈦酸鋇奈米顆粒(BaTiO3 nanoparticles),透過水熱法之溫度來控制顆粒尺寸以及結晶性等。第二部分為利用靜電紡絲技術製備奈米纖維,以聚丙烯腈作為濾材之基底,在二氧化鈦之部分,分別以不同重量百分比之商用二氧化鈦(P25)以及二氧化鈦球珠加入,發現加入商用二氧化鈦對於光降解以及抗菌方面有良好之結果,而二氧化鈦球珠則對於空氣過濾有較佳之效果,主要原因為二氧化鈦球珠在電容量之表現優於商用二氧化鈦,因此能以靜電吸引較多之微粒;而在鈦酸鋇奈米顆粒,分別也以不同之重量百分比加入,發現鈦酸鋇奈米顆粒對於空氣過濾之效果也有所提升,主要原因為靜電吸引所造成。綜合以上之敘述,了解二氧化鈦(商用二氧化鈦以及二氧化鈦球珠)以及鈦酸鋇之加入對於濾材的影響,因此製備出具有高過濾效能、低空氣阻力以及抗菌等多功能PM2.5過濾用之不織布。

    Commercial TiO2(P25)/PAN electrospun nanofibers, TiO2 beads/PAN electrospun nanofibers, and Commercial TiO2(P25)/ TiO2 beads/PAN electrospun nanofibers were prepared by electrospinning technique. This study will through add different concentration of TiO2 (P25 and TiO2 beads) to understand whether P25 and TiO2 beads have influence on surface morphology, filtration efficiency, and photodegradation efficiency.
    SEM analysis showed that commercial commercial TiO2(P25) and TiO2 beads were existed in nanofibers, we can understand the photocatalytic efficiency of nanofibers and prove the antibacterial results through photodegradation analysis, and anti-bacteria ability was analyzed by ISO 20743.
    Selected samples were evaluated for filtering efficiency using air filtration equirment and the removal efficiency was calculated by comparing the PM particle number concentration before and after filtration.

    摘要 I Extended Abstract III 致謝 XII 總目錄 XIII 表目錄 XVII 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 空氣汙染(Air Pollution) 2 1.3 懸浮微粒(Particulate Matter, PM) 3 1.4 紫外線(Ultraviolet radiation, UV) 5 1.5 抗菌(Anti-bacteria) 6 第二章 靜電紡絲技術 8 2.1 靜電紡絲技術之簡介 8 2.2 靜電紡絲之機制 10 第三章 靜電紡絲之過濾材應用 12 3.1 單一材料之過濾材 13 3.2 複合材料之過濾材 15 3.3 空氣過濾機制 17 第四章 研究動機與目的 20 第五章 研究方法及步驟 22 5.1 實驗材藥品與材料 22 5.2 實驗流程與分析方法 23 5.3 樣品之製備 24 5.3.1 粉末之製備 24 5.3.1.1 二氧化鈦球珠(TiO2 Mesoporous Beads) 24 5.3.1.2 鈦酸鋇奈米顆粒(BaTiO3 Nanoparticles) 26 5.3.2 奈米纖維之合成 28 5.3.2.1 聚丙烯腈奈米纖維 29 5.3.2.2 添加單一類型二氧化鈦之聚丙烯腈奈米纖維 30 5.3.2.3 添加兩種類型二氧化鈦之聚丙烯腈奈米纖維 31 5.3.2.4 鈦酸鋇奈米顆粒/聚丙烯腈奈米纖維 32 5.3.2.5 鈦酸鋇奈米顆粒/二氧化鈦球珠/聚丙烯腈奈米纖維 33 5.4 材料分析 34 5.4.1 X射線繞射(X-ray Diffraction, XRD)之分析 34 5.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 36 5.4.3 比表面積之測定(Brunauer-Emmet-Teller, BET) 37 5.4.4 UV-vis光學分析 37 5.4.5 光降解分析 38 5.4.6 電性測定 39 5.4.7 空氣過濾分析 41 5.4.8 抗菌測試(Anti-bateria test) 43 第六章 結果與討論 45 6.1 粉末分析 45 6.1.1 二氧化鈦球珠(TiO2 beads)性質分析 45 6.1.1.1 晶體結構分析 45 6.1.1.2 表面形貌及尺寸分析 46 6.1.1.3 比表面積 47 6.1.1.4 UV-vis光學分析 48 6.1.1.5 光降解分析 49 6.1.2 鈦酸鋇奈米顆粒(BaTiO3 nanoparticles)性質分析 50 6.1.2.1 晶體結構分析 50 6.1.2.2 表面形貌及尺寸分析 51 6.1.2.3 比表面積 52 6.2 奈米纖維分析 53 6.2.1 聚丙烯腈奈米纖維(PAN nanofibers) 53 6.2.1.1 表面形貌及尺寸分析 53 6.2.1.2 比表面積 55 6.2.1.3 空氣過濾分析 56 6.2.2 添加單一類型二氧化鈦之聚丙烯腈奈米纖維 58 6.2.2.1 晶體結構分析 58 6.2.2.2 表面形貌及尺寸分析 60 6.2.2.3 比表面積 65 6.2.2.4 UV-vis光學分析 67 6.2.2.5 光降解效率分析 70 6.2.2.6 空氣過濾分析 73 6.2.2.7 抗菌分析 78 6.2.3 添加兩種類型二氧化鈦之聚丙烯腈奈米纖維 80 6.2.3.1 晶體結構分析 80 6.2.3.2 表面形貌及尺寸分析 82 6.2.3.3 比表面積 85 6.2.3.4 UV-vis光學分析 86 6.2.3.5 光降解分析 88 6.2.3.6 空氣過濾分析 90 6.2.3.7 抗菌分析 93 6.2.4 鈦酸鋇奈米顆粒/聚丙烯腈奈米纖維 94 6.2.4.1 晶體結構分析 94 6.2.4.2 表面形貌及尺寸分析 95 6.2.4.3 比表面積 99 6.2.4.4 空氣過濾分析 100 6.2.5 鈦酸鋇奈米顆粒/二氧化鈦球珠/聚丙烯腈奈米纖維 103 6.2.5.1 晶體結構分析 103 6.2.5.2 表面形貌及尺寸分析 104 6.2.5.3 比表面積 109 6.2.5.4 UV-vis光學分析 110 6.2.5.5 光降解分析 112 6.2.5.6 空氣過濾分析 114 第七章 結論 117 參考文獻 119 附錄 126

    [1] Prof. Bert Brunekreef PhD, and Prof. Stephen T Holgate MD, Air pollution and health, The Lancet, Volume 360, Issue 9341, 19 October 2002, Pages 1233-1242.
    [2] Marilena Kampa, and Elias Castanas, Human health effects of air pollution, Environmental Pollution, Volume 151, Issue 2, January 2008, Pages 362-367.
    [3] Woodford, Chris. (2010/2017) Air pollution. Retrieved from http://www.explainthatstuff.com/air-pollution-introduction.html. [Accessed (20180406)]
    [4] Martha Patricia Sierra-Vargas and Luis M Teran, Air pollution: Impact and prevention, Respirology, Volume 17, Issue 7, October 2012, Pages 1031-1038.
    [5] Ann Robinson. How air pollution harms your health - and how to avoid it. Retrieved from https://www.theguardian.com/lifeandstyle/2017/feb/20/how-air-pollution-harms-your-health-and-how-to-avoid-it. [Accessed (20180406)]
    [6] Chong Liu, Po-Chun Hsu, Hyun-Wook Lee, Meng Ye, Guangyuan Zheng, Nian Liu,Weiyang Li, Yi Cui1, Transparent air filter for high-efficiency PM2.5 capture, Nature Communications 2015, 6, 6205-1-9.
    [7] Pope C.A., Dockery D.W., and Schwartz J., Review of epidemiological evidence of heath effects of particulate air pollution, Inhalation Toxicology 1995, 7, 1-18.
    [8] Feng Lu, Dongqun Xu, Yibin Cheng, Shaoxia Dong, Cha oGuo, Xue Jiang, and Xiaoying Zheng, Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population, Environmental Research Volume 136, January 2015, Pages 196-204.
    [9] Schwartz, J., and Neas, L.M., Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren, Epidemiology Volume 11, Issue 1, January 2000, Pages 6-10.
    [10] 蘇慧貞、江哲銘、李俊璋,「室內空氣品質標準草案及管制策略探討」,行政院環境保護署研究報告,1999。
    [11] Yasuhiro Matsumura, and Honnavara N Ananthaswamy, Toxic effects of ultraviolet radiation on the skin, Toxicology and Applied Pharmacology Volume 195, Issue 3, 15 March 2004, Pages 298-308.
    [12] Diffey BL. Solar ultraviolet radiation effects on biological system. Phys Med Biol. 1991; 36(3): 299-328.
    [13] Gordon M. Heisler, and Richard H. Grant, Ultraviolet radiation in urban ecosystems with consideration of effects on human health, Urban Ecosystems Volume 4, Issue 3, July 2000, Pages 193-229.
    [14] Helen Davies, Graham R. Bignell, Charles Cox, et al., Mutations of the BRAF gene in human cancer, Nature Volume 417, 27 June 2002, Pages949-954.
    [15] 劉宣良,許家銘,口罩與過濾, 科學發展2003, 368, 66-71。
    [16] Kenichi Ozawa, Masato Emori, Susumu Yamamoto, Ryu Yukawa, Shingo Yamamoto, Rei Hobara, Kazushi Fujikawa, Hiroshi Sakama, and Iwao Matsuda, Electron–Hole Recombination Time at TiO2 Single-Crystal Surfaces: Influence of Surface Band Bending, J. Phys. Chem. Lett., 2014, 5, Pages 1953-1957.
    [17] Zhen Zhang, and John T. Yates Jr, Direct Observation of Surface-Mediated Electron−Hole Pair Recombination in TiO2(110), J. Phys. Chem. C, 2010, 114, Pages 3098-3101.
    [18] 劉保順,何鑫,趙修建,趙青南,奈米TiO2的表面能態及光生電子 - 空穴對複合過程的研究,光譜學與光譜分析,2006, 26 , 208-212。
    [19] Oluwafunmilola Ola, and M. Mercedes Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, Pages 16-42.
    [20] A. Formhals, US Patent, 1934, 1-975-504.
    [21] Nandana Bhardwaj, and Subhas C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances Volume 28, Issue 3, May–June 2010, Pages 325-347.
    [22] Farah Ejaz Ahmed, Boor Singh Lalia, and Raed Hashaikeh, A review on electrospinning for membrane fabrication: Challenges and applications, Desalination Volume 356, 15 January 2015, Pages 15-30.
    [23] Christian Burger, Benjamin S. Hsiao, and Benjamin Chu, Nanofibrous materials and their applications, Annu. Rev. Mater. Res. Volume 36, 2006, Pages 333-68.
    [24] D. Li, and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel?*, Advanced Materials Volume 16, Issue 14, July 2004, Pages 1151-1170.
    [25] Luana Persano, Andrea Camposeo, Cagri Tekmen, and Dario Pisignano, Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review, Macromolecular Materials and Engineering Volume298, Issue5, May 2013, Pages 504-520.
    [26] Quynh P. Pham Upma Sharma, and Dr. Antonios G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, Tissue Engineering Volume 12, Issue 5, MAY 2006, Pages 1197-1211.
    [27] Darrell H Reneker, and Iksoo Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology Volume 7, 1996, Pages 216–223.
    [28] Avinash Baji, Yiu-Wing Mai, Shing-Chung Wong, Mojtaba Abtahi, and Pei Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties, Composites Science and Technology Volume 70, Issue 5, May 2010, Pages 703-718.
    [29] Mohammad Mirjalili, and Salar Zohoori, Review for application of electrospinning and electrospun nanofibers technology in textile industry, Journal of Nanostructure in Chemistry Volume 6, Issue 3, September 2016, Pages 207-213.
    [30] Zheng-Ming Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology Volume 63, Issue 15, November 2003, Pages 2223-2253.
    [31] Chong Liu, Po-Chun Hsu, Hyun-Wook Lee, Meng Ye, Guangyuan Zheng, Nian Liu, Weiyang Li, Yi Cui1, Transparent air filter for high-efficiency PM2.5 capture, Nature Communications 2015, 6, 6205-1-9.
    [32] Shu Zhang, Woo Sub Shim, and Jooyoun Kim, Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency, Materials & Design Volume 30, Issue 9, October 2009, Pages 3659-3666.
    [33] Gil Tae Kim, Young Chull Ahn, and Jae Keun Lee, Characteristics of Nylon 6 nanofilter for removing ultra fine particles, Korean Journal of Chemical Engineering Volume 25, Issue 2, March 2008, Pages 368-372.
    [34] Rufan Zhang, Chong Liu, Po-Chun Hsu, Chaofan Zhang, Nian Liu, Jinsong Zhang, Hye Ryoung Lee, Yingying Lu, Yongcai Qiu, Steven Chu, and Yi Cui. Nanofiber Air Filters with High-Temperature Stability for Efficient PM2.5 Removal from the Pollution Sources, Nano Lett. Volume 16, Issue 6, 2016, Pages 3642-3649.
    [35] Victor N. Morozov, and Andrei Y. Mikheev, Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique, Journal of Membrane Science Volumes 403–404, 1 June 2012, Pages 110-120.
    [36] S. Rajendran, and T. Uma, FTIR and conductivity studies of PVC based polymer electrolyte systems, Ionics Volume 7, Issue 1–2, January 2001, Pages 122-125.
    [37] Na Wang, Aikifa Raza, Yang Si, Jianyong Yu, Gang Sun, and Bin Din. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. Journal of Colloid and Interface Science Volume 398, 15 May 2013, Pages 240-246.
    [38] Bong Yeol Yeom, Eunkyoung Shim, Behnam Pourdeyhimi. Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromolecular Research, Volume 18, Issue 9, September 2010, Pages 884-890.
    [39] Nguyen Thuy Ba Linh, Kap-Ho Lee, and Byong-Taek Lee. Fabrication of photocatalytic PVA–TiO2 nano-fibrous hybrid membrane using the electro-spinning method. Journal of Materials Science, Volume 46, Issue 17, September 2011, Pages 5615–5620.
    [40] Tamer Uyar, Rasmus Havelund, Yusuf Nurd, Abidin Balan, Jale Hacaloglu, Levent Toppare, Flemming Besenbacher, Peter Kingshott. Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment, Journal of Membrane Science Volume 365, Issues 1-2, 1 December 2010, Pages 409-417.
    [41] Wallace Woon-Fong Leung, Chi-Ho Hung, and Ping-Tang Yuen, Effect of face velocity, nanofiber packing density and thickness on filtra-tion performance of filters with nanofibers coated on a substrate, Separation and Purification Technology Volume 71, Issue 1, 29 January 2010, Pages 30-37.
    [42] Gil-Young Oh, Young-Wan Ju, Mi-Young Kim, Hong-Ryun Jung, Hyung Jin Kim, and Wan-Jin Lee,Adsorption of toluene on carbon nanofibers prepared by electrospinning, Science of The Total Environment Volume 393, Issues 2–3, 15 April 2008, Pages 341-347.
    [43] R.S. Barhate, S.Koeppl, and S.Ramakrishna, Porous nano- and microfibrous polymeric membrane material for catalytic support, Chemical Engineering Research and Design Volume 89, Issue 6, June 2011, Pages 621-630.
    [44] Chun-Ren Ke1, Jyun-Sheng Guo, Yen-Hsun Su and Jyh-Ming Ting. The effect of silver nanoparticles/graphene-coupled TiO2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production, Nanotechnology 27 (2016) 435405.
    [45] M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, Hydrothermal Microwave: A New Route to Obtain Photoluminescent Crystalline BaTiO3 Nanoparticles, Chemistry of Materials, Volume 20, Issue 16, 2008, Pages 5381-5387.
    [46] Shu-HanHsieh, and Jyh-MingTing. Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials. Applied Surface Science Volume 427, Part A, 1 January 2018, Pages 465-475.
    [47] A.Nicosia, W.Gieparda, J.Foksowicz-Flaczyk, J.Walentowska, D.Wesołek, B.Vazquez, F.Prodi, and F.Belosi. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Separation and Purification Technology Volume 154, 5 November 2015, Pages 154-160.
    [48] M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, Hydrothermal Microwave: A New Route to Obtain Photoluminescent Crystalline BaTiO3 Nanoparticles, Chemistruy of Materials, Volume 20, Issue 16, 2008, Pages 5381-5387.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE