簡易檢索 / 詳目顯示

研究生: 李明諭
Lee, Ming-Yu
論文名稱: 篩選與大豆性狀相關的簡單重複序列分子標記
Screening of simple sequence repeat molecular markers associated with soybean traits
指導教授: 蔡文杰
Tsai, Wen-Chieh
大林祝
Ohbayashi, Iwai
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 77
中文關鍵詞: 大豆簡單重複序列標記遺傳相似性
外文關鍵詞: soybean, simple sequence repeats (SSR) marker, genetic similarity
相關次數: 點閱:112下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大豆是世界上重要的農作物之一。培育優良大豆品種,選擇性狀優良的親代和鑑定優良後代是關鍵因素。分子標記輔助育種已被證明可以有效降低育種成本、縮短育種週期。
    本研究使用並記錄了 23個大豆品種,其中包括 14個外國大豆品種和 9個台灣品種。 應用 50個已發表的簡單序列重複 (SSR) 標記來研究它們與 23個大豆品種性狀的關聯。 本研究的目的是鑑定與 23個大豆品種性狀相關的標記。在與性狀相關的35個SSR標記中,有7個與先前的研究結果一致。由於這些品種的譜系未知,這些SSR標記也被用來評估23個大豆品種之間的遺傳相似性。 結果表明,12號VI014685與其他22個品種差異最大。可以進行額外的研究和開發來完善這些標記,以識別 23 個大豆品種。
    本研究提供了23個大豆品種的性狀和分子標記的基本資訊。這23個大豆品種的資訊將有助於後續大豆育種和其他分子標記相關研究的利用。

    Soybean is one of the important crops in the world. To cultivate superior soybean varieties, the selection of parent plants with desirable traits and the identification of excellent offspring are crucial factors. Molecular marker-assisted breeding has been proven effective in reducing breeding costs and shortening the breeding cycle.
    Twenty-three soybean were used and documented their traits in this study, including 14 foreign soybean varieties and 9 cultivars in Taiwan. Fifty published simple sequence repeats (SSR) markers were applied to investigate their association with the traits of the 23 soybeans cultivars. The purpose of this study is to identify markers that are associated with the traits of 23 soybean varieties. Among the 35 SSR markers associated with the trait, seven of them are consistent with the findings from previous studies. Due to the unknown pedigree of these varieties, these SSR markers were also employed to assess the genetic similarity among the 23 soybeans. The results indicated that No.12 VI014685 differs the most from the other 22 soybeans. Additional research and development can be carried out to refine these markers for the identification of the 23 soybeans.
    This study provides basic information on the traits and molecular markers of 23 soybean varieties. The information of the 23 soybean will contribute to subsequent soybean breeding and other molecular marker-related research.

    中文摘要 I Abstract II 致謝 III List of Tables V List of Figures VI 1. Introduction 1 1.1 SOYBEAN (Glycine Max) 1 1.2 DNA Molecular marker 2 1.3 Aim of this study 4 2. Materials and methods 5 2.1 Soybean trait assessment 5 2.2 DNA extraction 5 2.3 Primer design and Polymerase chain reaction 6 2.4 Data analysis 6 2.4.1 Capillary electrophoresis data 6 2.4.2 Similarity analysis 7 2.4.3 Testing whether SSR markers are associate to soybean traits. 7 3. Result 8 3.1 Soybean traits 8 3.2 Genetic similarity of twenty-three soybean 9 3.3 After assess the association between SSR markers and soybean traits, thirty-five SSR markers are considered to be associated with different soybean traits 10 4. Discussion 14 4.1 The genetic similarity of varieties cannot be distinguished based on traits alone 14 4.2 SSR marker can develop to identify soybean varieties 14 4.3 Further research is required to validate the linkage between marker and soybean traits 15 Reference 17

    Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant cell reports, 27, 617-631.

    Bisen, A., Khare, D., Nair, P., & Tripathi, N. (2015). SSR analysis of 38 genotypes of
    soybean (Glycine Max (L.) Merr.) genetic diversity in India. Physiology and Molecular Biology of Plants, 21, 109-115.

    Brown‐Guedira, G., Thompson, J., Nelson, R., & Warburton, M. (2000). Evaluation of
    genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop science, 40(3), 815-823.

    Chowdhury, A., Srinives, P., Saksoong, P., & Tongpamnak, P. (2002). RAPD markers
    linked to resistance to downy mildew disease in soybean. Euphytica, 128, 55-60.

    Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557-572.

    Cregan, P., Jarvik, T., Bush, A., Shoemaker, R., Lark, K., Kahler, A., Kaya, N., VanToai,
    T., Lohnes, D., & Chung, J. (1999). An integrated genetic linkage map of the soybean
    genome. Crop science, 39(5), 1464-1490.

    Csanádi, G., Vollmann, J., Stift, G., & Lelley, T. (2001). Seed quality QTLs identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics, 103, 912-919.

    Cupic, T., Tucak, M., Popovic, S., Bolaric, S., Grljusic, S., & Kozumplik, V. (2009). Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. J. Food Agric. Environ, 7(3), 4.

    Diers, B. W., Keim, P., Fehr, W., & Shoemaker, R. (1992). RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 83, 608-612.

    Du, W., Wang, M., Fu, S., & Yu, D. (2009). Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. Journal of Genetics and Genomics, 36(12), 721-731.

    Eskandari, M., Cober, E. R., & Rajcan, I. (2013). Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theoretical and Applied Genetics, 126, 1677-1687.

    Garcia-Vallvé, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular biology and evolution, 16(9), 1125-1134.

    Garcia, A. A., Benchimol, L. L., Barbosa, A. M., Geraldi, I. O., Souza Jr, C. L., & Souza, A. P. d. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology, 27, 579-588.

    Ghosh, J., Ghosh, P., & Choudhury, P. (2014). An assessment of genetic relatedness between soybean [Glycine max (L.) Merrill] cultivars using SSR markers. American Journal of Plant Sciences, 5(20), 3089.

    Guzman, P., Diers, B. W., Neece, D., St. Martin, S., LeRoy, A., Grau, C., Hughes, T., & Nelson, R. L. (2007). QTL associated with yield in three backcross‐derived populations of soybean. Crop science, 47(1), 111-122.

    Han, Y., Li, D., Zhu, D., Li, H., Li, X., Teng, W., & Li, W. (2012). QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theoretical and Applied Genetics, 125, 671-683.

    Hartman, G. L., West, E. D., & Herman, T. K. (2011). Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security, 3, 5-17.

    Hoeck, J. A., Fehr, W. R., Shoemaker, R. C., Welke, G. A., Johnson, S. L., & Cianzio, S. R. (2003). Molecular marker analysis of seed size in soybean. Crop science, 43(1), 68-74.

    Hymowitz, T. (1990). Soybeans: The success story. Advances in new crops, 159-163.
    Jiang, G.-L. (2013). Molecular markers and marker-assisted breeding in plants. Plant breeding from laboratories to fields, 3, 45-83.

    Kabelka, E., Diers, B., Fehr, W., LeRoy, A., Baianu, I., You, T., Neece, D., & Nelson, R. (2004). Putative alleles for increased yield from soybean plant introductions. Crop science, 44(3), 784-791.

    Kim, H., Kang, S., & Suh, D. (2005). Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant breeding, 124(6), 582-589.

    Kim, K.-S., Diers, B., Hyten, D., Rouf Mian, M., Shannon, J., & Nelson, R. (2012). Identification of positive yield QTL alleles from exotic soybean germplasm in two back cross populations. Theoretical and Applied Genetics, 125, 1353-1369.

    Kuroda, Y., Kaga, A., Tomooka, N., Yano, H., Takada, Y., Kato, S., & Vaughan, D. (2013). QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecology and Evolution, 3(7), 2150-2168.

    Li, D., Sun, M., Han, Y., Teng, W., & Li, W. (2010). Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica, 172, 49-57.

    Li, W., Zheng, D.-H., Van, K.-J., & Lee, S.-H. (2008). QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). Journal of Crop Science and Biotechnology, 11(3), 171-176.

    Li, Z., Jakkula, L., Hussey, R., Tamulonis, J., & Boerma, H. (2001). SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern rootknot nematode. Theoretical and Applied Genetics, 103, 1167-1173.

    Liang, Q., Cheng, X., Mei, M., Yan, X., & Liao, H. (2010). QTL analysis of root traits as related to phosphorus efficiency in soybean. Annals of Botany, 106(1), 223-234.

    Liu, W., Kim, M. Y., Van, K., Lee, Y.-H., Li, H., Liu, X., & Lee, S.-H. (2011). QTL identification of yield-related traits and their association with flowering and maturity in soybean. Journal of Crop Science and Biotechnology, 14, 65-70.

    Lu, B.-R., Cai, X., & Xin, J. (2009). Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Progress in Natural Science, 19(10), 1241-1252.

    Nichols, D., Glover, K., Carlson, S., Specht, J., & Diers, B. (2006). Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop science, 46(2), 834-839.

    Ning, H., Yuan, J., Dong, Q., Li, W., Xue, H., Wang, Y., Tian, Y., & Li, W.-X. (2018).
    Identification of QTLs related to the vertical distribution and seed-set of pod
    number in soybean [Glycine max (L.) Merri]. PLoS One, 13(4), e0195830.

    Nozue, M., Shimazu, T., Sasazuki, S., Charvat, H., Mori, N., Mutoh, M., Sawada, N., Iwasaki, M., Yamaji, T., & Inoue, M. (2017). Fermented soy product intake is inversely associated with the development of high blood pressure: The Japan Public Health Center–Based Prospective Study. The Journal of nutrition, 147(9), 1749-1756.

    Orf, J., Chase, K., Jarvik, T., Mansur, L., Cregan, P., Adler, F., & Lark, K. (1999). Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop science, 39(6), 1642-1651.

    Pan, Y.-B. (2006). Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 8, 246-256.

    Patil, G., Do, T., Vuong, T. D., Valliyodan, B., Lee, J.-D., Chaudhary, J., Shannon, J. G., & Nguyen, H. T. (2016). Genomic-assisted haplotype analysis and the development of highthroughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6(1), 19199.

    Pawlowski, J. W., Martin, B. R., McCabe, G. P., McCabe, L., Jackson, G. S., Peacock, M., Barnes, S., & Weaver, C. M. (2015). Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial. The American journal of clinical nutrition, 102(3), 695-703.

    Perić, V., Nikolić, A., Babić, V., Srebrić, M., Mladenović Drinić, S., Sudarić, A., & Đorđević, V. (2014). Genetic relatedness of soybean genotypes based on agromorphological traits and RAPD markers. Genetika, 46(3), 839-854.

    Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in plant science, 1(7), 215-222.

    Reinprecht, Y., Poysa, V. W., Yu, K., Rajcan, I., Ablett, G. R., & Pauls, K. P. (2006). Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 49(12), 1510-1527.

    Rossi, M. E., Orf, J. H., Liu, L.-J., Dong, Z., & Rajcan, I. (2013). Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian× Chinese crosses. Theoretical and Applied Genetics, 126, 1809-1823.

    Singh, J., Birbian, N., Sinha, S., & Goswami, A. (2014). A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci, 1(7), 65-80.

    Song, Q., Marek, L., Shoemaker, R., Lark, K., Concibido, V., Delannay, X., Specht, J. E., & Cregan, P. (2004). A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 109, 122-128.

    Specht, J., Chase, K., Macrander, M., Graef, G., Chung, J., Markwell, J., Germann, M., Orf, J., & Lark, K. (2001). Soybean response to water: a QTL analysis of drought tolerance. Crop science, 41(2), 493-509.

    Wang, X., Jiang, G.-L., Green, M., Scott, R. A., Song, Q., Hyten, D. L., & Cregan, P. B. (2014). Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Molecular genetics and genomics, 289, 935-949.

    Xu, L., Du, B., & Xu, B. (2015). A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chemistry, 174, 202-213.

    Yang, Z., Xin, D., Liu, C., Jiang, H., Han, X., Sun, Y., Qi, Z., Hu, G., & Chen, Q. (2013). Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Molecular genetics and genomics, 288, 651-667.

    Yao, D., Liu, Z., Zhang, J., Liu, S., Qu, J., Guan, S., Pan, L., Wang, D., Liu, J., & Wang, P. (2015). Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res,14(2), 6101-6109.

    Zhou, R., Wu, Z., Cao, X., & Jiang, F. (2015). Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genet. Mol. Res, 14(4), 13868-13879.

    下載圖示
    校外:立即公開
    QR CODE