簡易檢索 / 詳目顯示

研究生: 周映亘
Chou, Ying-Syuan
論文名稱: 使用深度學習技術預測房價-以嘉義縣、市為例
Using Deep Learning to Predict the Housing Prices for Chiayi City and Chiayi County of Taiwan
指導教授: 蔡群立
Tsai, Chun-Li
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 69
中文關鍵詞: 房屋價格預測深度學習長短期記憶模型嘉義市嘉義縣
外文關鍵詞: Housing price prediction, Deep learning, Long Short-Term Memory, Chiayi City, Chiayi County
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然有許多研究重視房價的預測,但先前文獻多著重於觀察六都的房屋市場。但我們發現嘉義市在2012年房價指數僅約75,而2024年已經高達到165;另外,嘉義縣亦呈現房價指數高漲的趨勢,從2012年85成長至2024年195,顯示嘉義市、縣房屋市場蓬勃發展,這也是本文的研究起始動機,我們著重觀察嘉義縣、市房價的變化趨勢,並使用深度學習技術建構房屋價格的預測模型。本文與過去使用深度學習技術預測房價不同之處,乃在本文不是使用過去文獻採用的房價指數當為預測應變數;也不是只著重使用總體經濟、貨幣政策、房地產、人口結構變數當為預測自變數。本文資料是採用內政部不動產交易實價房屋資訊平台,我們以實價房屋交易的相關變數來預測嘉義市、縣房價,模型也會加入總體經濟變數、與房屋位置相關的人口等資訊。
    本文研究時間涵蓋 2012年1月至 2024 年 12 月,房屋型態包含透天厝、住宅大樓、華廈、公寓、與套房等五種不同類型,實價房屋交易共61376筆資料,其中嘉義市31840筆、嘉義縣29536筆。我們以長短期記憶(LSTM)模型、與LSTM-滾動視窗兩種模型,分別預測五種不同類型的房價。研究結果顯示,以2012到2024整體資料來看,不論是嘉義市或嘉義縣,標準LSTM模型會比LSTM–滾動視窗模型還要來的準確。另外,從嘉義縣、市房屋在 2018 年前與 2018 年後之每坪單價與成交總價預測 RMSE 結果比較,發現在2018 年後,當各類房型的房價明顯上升情況下,LSTM–滾動視窗模型的預測表現是優於LSTM 模型,隱含著LSTM–滾動視窗模型在房價高波動時期預測嘉義縣、市房價,會比LSTM模型佳。

    This study applies deep learning techniques to predict housing prices in Chiayi City and Chiayi County, Taiwan—regions that have experienced rapid price growth but remain underexplored in the housing literature. Using 61,376 transaction-level observations from the Ministry of the Interior’s Actual Price Registration System covering 2012–2024, this research incorporates detailed housing characteristics, macroeconomic indicators, temporal factors, and population-related variables. Long Short-Term Memory (LSTM) models and LSTM models with a rolling window mechanism are employed to forecast unit prices per ping and total transaction prices across five housing types. Forecast performance is evaluated using the Root Mean Square Error (RMSE). The results show that standard LSTM models perform better over the full sample period, while LSTM models with rolling windows achieve superior accuracy after 2018, when housing prices became more volatile. These findings suggest that rolling window approaches enhance model adaptability in rapidly changing housing markets and provide useful insights for regional housing policy and market risk assessment.

    第一章 緒論 10 第一節 研究動機 10 第二節 研究目標 12 第三節 研究方法 12 第二章 文獻回顧 15 第一節 貨幣政策對房地產市場之影響 15 第二節 住宅特徵對房價之影響 15 第三節 房價預測模型與方法之相關文獻 16 第四節 長短期記憶模型於房價預測之應用文獻 17 第三章 預測模型與資料來源 20 第一節 模型 20 3.1.1 遞歸類神經網路(Recurrent Neural Network, RNN) 21 3.1.2 長短期記憶模型(Long Short-Term Memory Network, LSTM) 23 3.1.3 LSTM-滾動視窗模型 27 第二節 實證資料來源 28 第三節 建構預測房地產市場模型 32 第四章 實證結果與分析 36 第一節 敘述性統計 36 4.1.1 嘉義市房屋交易敘數性統計 36 4.1.2 嘉義縣房屋交易敘數性統計 38 4.1.3 LSTM預測模型 41 4.1.4 LSTM預測模型—滾動視窗 41 第二節 預測模型之準確度比較 42 4.2.1嘉義市房價預測的結果 42 4.2.2 嘉義縣房價預測的結果 45 第三節 嘉義市在2018年前、後之房價預測比較 46 第四節 嘉義縣在2018年前、後之房價預測比較 49 第五節 嘉義市在2018年前、後之五種類型房價預測比較 50 第六節 嘉義縣在2018年前、後之五種類型房價預測比較 52 第五章 結論 55 參考文獻 58

    蔡怡純與陳明吉,2004,台北地區住宅市場結構性轉變與價格均衡調整,都市與計劃, 31(4):365-390。
    蔡怡純與陳明吉,2008,台北地區不動產價格波動之不對稱性探討,住宅學報,17(2):1-11。
    蔡繡容與夏政瑋,2023,深度學習模型在台灣房價預測之應用,都市與區域研究季刊,36(1): 23-41。
    翁逸群,2015,廣義自我迴歸條件異質變異數模型於台灣房地產市場之應用,住宅學報,24(1), 55-77。
    彭建文,2015,總體政經與房地產關聯分析,2015年台灣房地產年鑑,台北:行義文化出版有限公司。
    Abadi, M. Barham, P. Chen, J. Chen, Z. Davis, A. Dean, J. Devin, M. Ghemawat, S. Irving,G. Isard, M. et al. 2016. TensorFlow: A system for large-scale machine learning. in: OSDI, Vol. 16, Savannah, GA, USA, 265–283.
    Addae-Dapaah, K. 2014. Housing loan and the price of housing in Singapore. Journal of Business and Economics, 5(9), 1513-1524.
    Anthony, O. A. 2012. Examination of the determinants of housing values in urban Ghana and implications for policy makers. Journal of African Real Estate Research, 2(1), 58- 85.
    Aoki, K., Proudman, J., Vlieghe, G. 2004. House prices, consumption, and monetary policy: A financial accelerator approach. Journal of Financial Intermediation, 13(4), 414–435.
    Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G. 2019. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25, 954–961.
    Atteberry, W., & Rutherford, R. 1993. Industrial real estate prices and market efficiency. Journal of Real Estate Research, 8(3), 377-385.
    Ayan, E., & Eken, S. 2021. Detection of price bubbles in Istanbul housing market using LSTM autoencoders: a district-based approach. Soft Computing, 25(12), 7957.
    Bao, W., Yue, J., & Rao, Y. 2017. A deep learning framework for financial time series using stacked autoencoders and long short-term memory. PLOS ONE, 12(7), 1-24.
    Bai, S., Kolter, J. Z., & Koltun, V. 2018. Trellis networks for sequence modeling. arXiv preprint arXiv:1810.06682.
    Bostic, R., Gabriel, S., & Painter, G. 2009. Housing wealth, financial wealth, and consumption: New evidence from micro data. Regional Science and Urban Economics, 39(1), 79–89.
    Buddiga, S. K. P., & Nuthakki, S. Enhancing Customer Experience through Personalized Recommendations: A Machine Learning Approach.
    Case, Karl E., John M. Quigley, and Robert J. Shiller. 2005. Comparing Wealth Effects: The Stock Market versus The Housing Market. Advances in Microeconomics, 5(1), 1-32.
    Chen, X., Wei, L., & Xu, J. 2017. House price prediction using LSTM. arXiv preprint arXiv:1709.08432.
    Choi, J., Park, H., Park, J., Lee, C., & Choi, B. 2018. Artificial Intelligence to forecast new nurse turnover rates in hospital. Journal of The Korean Chemical Society, 9, 431-440.
    Chou, J. S., & Nguyen, T. K. 2018. Forward forecast of stock price using sliding-window metaheuristic-optimized machine-learning regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142.
    Clark, T. E., & McCracken, M. W. 2009. Tests of equal predictive ability with real-time data. Journal of Business & Economic Statistics, 27(4), 441-454.
    Crawford, G. W., & Fratantoni, M. 2003. Assessing the forecasting performance of regime-switching, ARIMA and GARCH models of house prices. Real Estate Economics, 31(2), 223–243.
    Crone, T., & Voith, R. 1992. Estimating house price appreciation: A comparison of methods. Journal of Housing Economics, 2(4), 324–338.
    Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. 2020. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in industry, 123, 103298.
    Del Negro, M., & Otrok, C. 2007. 99 Luftballons: Monetary policy and the house price boom across US states. Journal of Monetary Economics, 54(7), 1962-1985.
    Disney, R., Henley, A., & Jevons, D. 2010. House price shocks, negative equity, and household consumption in the United Kingdom. Journal of the European Economic Association, 8(6), 1179–1207.
    Dubin, R. A. 1998. Predicting house prices using multiple listings data. The Journal of Real Estate Finance and Economics, 17(1), 35-59.
    Engle, R. F., & Bollerslev, T. 1986. Modelling the persistence of conditional variances. Econometric reviews, 5(1), 1-50.
    Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. 2017. Dermatologist-level classification of skin cancer with deep neural networks. nature,542(7639), 115-118.
    Favilukis, J., Ludvigson, S. C., & Van Nieuwerburgh, S. 2017. The macroeconomic effects of housing wealth, housing finance, and limited risk sharing in general equilibrium. Journal of Political Economy, 125(1), 140-223.
    Ferrero, A. 2015. House price booms, current account deficits, and low interest rates. Journal of Money, Credit and Banking, 47(S1), 261-293.
    Friedrich, F., Brack, M., Struppek, L., Hintersdorf, D., Schramowski, P., Luccioni, S., & Kersting, K. 2023. Fair diffusion: Instructing text-to-image generation models on fairness. arXiv preprint arXiv:2302.10893.
    Gers, F. A., & Schmidhuber, J. 2000. Recurrent nets that time and count. Neural Computation, 12(10), 2451–2473.
    Graves, A., Mohamed, A. R., & Hinton, G. 2013. Speech recognition with deep recurrent neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6645–6649.
    Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. 2019. A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 37(3), 362–386.
    Grigorescu, A., & Joita, F. 2024. Generative AI and Labour Market Research Interest Framework. HOLISTICA Journal of Business and Public Administration, 15(2), 1-14.
    Guirguis, H. S., Giannikos, C. I., & Anderson, R. I. 2005. The US housing market: Asset pricing forecasts using time-varying coefficients. Journal of Real Estate Finance and Economics, 30(1), 33–53.
    Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L., & Bao, Y. 2019. Who limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In Proceedings of the international symposium on quality of service.
    Hochreiter, S., & Schmidhuber, J. 1997. Long short-term memory. Neural computation, 9(8), 1735-1780.
    Iacoviello, M. 2005. House prices, borrowing constraints, and monetary policy in the business cycle. American economic review, 95(3), 739-764.
    Janiesch, C., Zschech, P., & Heinrich, K. 2021. Machine learning and deep learning. Electronic markets, 31(3), 685-695.
    Khandani, A. E., Kim, A. J., & Lo, A. W. 2010. Consumer credit-risk models via machine learning algorithms. Journal of Banking & Finance, 34(11), 2767–2787.
    Kim, H., Kwon, Y., & Choi, Y. 2020. Assessing the impact of public rental housing on the housing prices in proximity: Based on the regional and local level of price prediction models using long short-term memory (LSTM). Sustainability, 12(18), 7520.
    Kim, C. H., & Kim, K. H. 2000. The political economy of Korean government policies on real estate. Urban studies, 37(7), 1157-1169.
    Kiran, B. R., Sobh, I., & Talpaert, V. 2020. Deep reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4922–4942.
    Kraus, M., Feuerriegel, S., & Oztekin, A. 2020. Deep learning in business analytics and operations research: Models, applications and managerial implications. European Journal of Operational Research, 281(3), 628-641.
    Krittanawong, C. 2018. The rise of artificial intelligence and the uncertain future for physicians. European journal of internal medicine, 48, e13-e14.
    Kufel, J., Bargieł-Łączek, K., Kocot, S., Koźlik, M., Bartnikowska, W., Janik, M., Czogalik, Ł., Dudek, P., Magiera, M., Lis, A., Paszkiewicz, I., Nawrat, Z., Cebula, M., and Gruszczyńska. K. 2023. What is machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics, 13(15), 2582.
    Kumar. S. K., Bhatt, S. Phudinawala, H. 2023. Predicting house price with deep learning: a comparative study of machine learning models. International Journal for Multidisciplinary Research, 5(2). 1-10.
    Lee, C., & Park, K. K. H. 2020. Representing uncertainty in property valuation through a bayesian deep learning approach. Real Estate Management and Valuation, 28(4), 15-23.
    Lee, H., Lee, B., & Lee, S. 2020. The unequal impact of natural landscape views on housing prices: Applying visual perception model and quantile regression to apartments in Seoul. Sustainability, 12(19), 8275.
    Lu, Y., V. Shi, and C. J. Pettit. 2023. The Impacts of Public Schools on Housing Prices of Residential Properties: A Case Study of Greater Sydney, Australia. ISPRS Int. J. Geo-Inf, 12(7), 298.
    Malpezzi, S. 1999. A simple error correction model of house prices. Journal of Housing Economics, 8(1), 27–62.
    Marcato, G., & Nanda, A. 2016. Information content and forecasting ability of sentiment indicators: case of real estate market. Journal of Real Estate Research, 38(2), 165-204.
    Mille, N., Sah, V., Sklarz, M., & Pampulov, S. 2013. Is there seasonality in home prices—evidence from cbsas. Journal of Housing Research, 22(1), 1-15.
    Milunovich, G. 2020. Forecasting Australia's real house price index: A comparison of time series and machine learning methods. Journal of Forecasting, 39(7), 1098-1118.
    Ndikum, P., & Ndikum, S. 2024. Advancing investment frontiers: Industry-grade deep reinforcement learning for portfolio optimization. arXiv preprint arXiv:2403.07916.
    Nelson, D. M., Pereira, A. C., & De Oliveira, R. A. 2017. Stock market's price movement prediction with LSTM neural networks. In 2017 International joint conference on neural networks (IJCNN) (pp. 1419-1426). Ieee.
    Ngai, L. R., & Tenreyro, S. 2014. Hot and cold seasons in the housing market. American Economic Review, 104(12), 3991-4026.
    Parreco, J., Hidalgo, A., Parks, J. J., Kozol, R., & Rattan, R. 2018. Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement. Journal of Surgical Research, 228, 179-187.
    Pesaran, M. H., & Timmermann, A. 2007. Selection of estimation window in the presence of breaks. Journal of Econometrics, 137(1), 134-161.
    Peng, C.-W. 2015. Macroeconomic and political analysis related to the real estate market. In Taiwan Real Estate Yearbook 2015. Taipei: Shing-Yi Cultural Publishing Co., Ltd.
    Rather, A. M., Agarwal, A., & Sastry, V. N. 2015. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6), 3234-3241.
    Rosen, S. 1974. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy 82(1): 34–55.
    Schmidhuber, J. 2015. Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
    Suleiman, A. A., Othman, M., Daud, H., Abdullah, M. L., Kadir, E. A., Kane, I. L., & Husin, A. 2023. Forecasting the volatility of real residential property prices in Malaysia: A comparison of GARCH models. Real Estate Management and Valuation, 31(3), 20-31.
    Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Cheng, Z. 2020. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682.
    Tsai, I. C. & M. C. Chen. 2004. Structural Change in the Taipei Housing Market and Price Equilibrium Adjustment. City and Planning, 31(4): 365-390.
    Tsai, I. C. & M. C. Chen. 2008. An Analysis of the Asymmetric Volatility of Real Estate Price in the Taipei Area. Journal of Housing Studies, 17(2): 1-11.
    Tsai, H.-J., & Hsia, C.-W. 2023. Prediction model for the trend of Taiwan’s real estate market: Applying deep learning technology. Journal of Housing Studies, 32(2), 21–55.
    Tsai., C & Fang, Y. 2025. Does the Construction of Tainan’s Shalun Smart Green Energy Science City Boost Housing Prices and Rents in Adjacent Areas?
    Uddin, M. G., Nash, S., Diganta, M. T. M., Rahman, A., & Olbert, A. I. 2022. Robust machine learning algorithms for predicting coastal water quality index. Journal of Environmental Management, 321, 115923.
    Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P., & Koumoutsakos, P. 2018. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213), 20170844.
    Weng Yi-Chun, & Xu Wen-Zhao. 2015. A study on the prediction of housing prices in Taiwan. Journal of Innovation and R&D, 11 (1), 23-38.
    Wang, F., Zou, Y., Zhang, H., & Shi, H. 2019. House price prediction approach based on deep learning and ARIMA model. In 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT) (pp. 303-307). IEEE.
    Wang, W. K., Lin, C. C., & Tsai, I. C. 2022. Long-and short-term price behaviors in presale housing markets in Taiwan. Economic Analysis and Policy, 74, 350-364.
    Wang, W. 2025. Predicting Housing Prices via Machine Learning and Stochastic Processes: A Case Study of the Taiwan Property Market. 34(1), 1-20.
    Wind, B., Lersch, P., & Dewilde, C. 2017. The distribution of housing wealth in 16 European countries: Accounting for institutional differences. Journal of Housing and the Built Environment, 32(4), 625-647.
    Worzala, E., Lenk, M., & Silva, A. 1995. An exploration of neural networks and its application to real estate valuation. Journal of Real Estate Research, 10(2), 185-201.
    Xiong, R., Nichols, E. P., & Shen, Y. 2015. Deep learning stock volatility with google domestic trends. arXiv preprint arXiv:1512.04916.
    Xu, X. E., & Chen, T. 2012. The effect of monetary policy on real estate price growth in China. Pacific-Basin Finance Journal, 20(1), 62-77.
    Yue, S., & Hongyu, L. 2004. Housing prices and economic fundamentals: a cross city analysis of China for 1995—2002. Economic Research Journal, 6, 78-86.
    Yu, L., Jiao, C., Xin, H., Wang, Y., & Wang, K. 2018. Prediction on housing price based on deep learning. International Journal of Computer and Information Engineering, 12(2), 90-99.
    Yunfang, L. & G. Tiemei. 2007. Empirical Analysis on Real Estate Price Fluctuation in Different Provinces of China. Economic Research Journal, 8: 133-142.
    Zaremba, W., Sutskever, I., & Vinyals, O. 2014. Recurrent neural network regularization. arXiv preprint arXiv:1409.2329.
    Ziyadi, H., Salavati, E., & Lotfi Heravi, M. M. 2023. Housing Price Forecasting Using AI (LSTM). Financial Research Journal, 25(4), 557-576.

    QR CODE