| 研究生: |
李冠穎 Lee, Kuan-Yin |
|---|---|
| 論文名稱: |
二氧化碳環境下對油井水泥物理性質及化學性質之影響 A study of the mechanical and chemical properties of API G cement with additives exposed to CO2- rich environment |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 二氧化碳(CO2) 、油井水泥 、碳化 |
| 外文關鍵詞: | CO2, well cement, carbonization |
| 相關次數: | 點閱:60 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綜合許多提出CO2封存技術的研究中,因地質封存具有巨大潛在的儲存量,因此將CO2注入地底封存為最有遠景的方式。然而評估保護井孔的油井水泥在長期的封存下是否能安全且有效的封存CO2為我們必須做的一項課題。CO2注入到深層的地質結構中通常伴隨著含水層或鹽水層,CO2與水會結合形成碳酸(H2CO3)並且使水泥鹼性降低、抗壓強度降低、滲透率增加,這些可能會造成CO2從井孔洩漏的風險。
本研究試圖研究不同配比的API G級水泥在CO2環境下(常壓、70℃)對其力學性質、化學組成、微觀結構之影響。添加物包含飛灰、膨潤土、矽粉及重晶石。連續反應28天後進行試驗,力學試驗部分包括抗壓強度、彈性參數,微觀結構分析包括XRD、SEM、EDS,也觀察記錄了試體的碳化深度。本研究發現添加飛灰的API G級水泥有最佳的抗壓強度且有最深的碳酸鈣堆積層,添加膨潤土的API G級水泥因水灰比較高所以其抗壓強度最弱且碳酸鈣堆積層深度較淺。
Among commonly proposed CO2 storage techniques, injection of anthropogenic CO2 underground is promising due to their large potential storage capacity and geographic ubiquity. However, the long-term wellbore integrity of the cement sheath should be carefully evaluated to ensure the safe and efficient storage of CO2. Injection of CO2 into the deep geological formations often encounters the aquifers or deep saline aquifers. CO2 reacting with water will become the carbonic acid (H2CO3) and it will make cement more alkaline, lower in compressive strength, and increasing in degree of saturation. The well integrity will be weakened by the increase in the degree of carbonization. It will result in the reduction in service life of the well and possible leakage of CO2 from the wellbore.
This paper attempts to study the mechanical properties, chemical compositions, and microscopic structures of API G cements with different additives in the saturated-CO2 condition (atmospheric pressure, 70℃). The additives under investigation include fly ash, bentonite, and barite with silicate. The evolution of the mechanical properties including compressive strength, deformation modulus, and microscopic structure analysis including XRD, EDS, and SEM, were recorded over a period of 28 days. The carbonized depths of the samples over time were also observed. This study finds that the API G cement with fly ash displays the best compressive strength with deepest penetrating depth of carbonization. The API G cement with bentonite with higher water content has the lowest compressive strength with shallowest penetrating depth of carbonization.
[1] 李小春、小出仁、大隅多加志,「二氧化碳地中隔離技術及其岩石力學問題」,岩石力學與工程學報,22(6),2003。
[2] 范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」, 第二屆資源工程研討會論文集,2005。
[3] 俞其文,「二氧化碳捕獲與封存」,水利土木科技資訊季刊,41期,2008。
[4] 林炳炎,「飛灰用在混凝土中」,現代營見雜誌社,1991。
[5] 周仕明、王立志、楊廣國、楊紅岐,「高溫環境下CO2腐蝕水泥石規律的實驗研究」,石油鑽探技術,36(6),2008 。
[6] 徐明、王廣雷、馬淑梅、薑濤,「二氧化碳對油井水泥腐蝕研究」,第六屆石油鑽井院所長會議論文集, 2006。
[7] 郭志勤、趙慶、燕平、魏作斌,「固井水泥石抗腐蝕性能的研究」,鑽井液與完井液,21(6),2004。
[8] 郭珍明,「以有機溶劑作為水泥熟料助磨劑之研究」,國立成功大學資源工程研究所碩士論文,2004。
[9] 黃州屏,「含混合材料水泥硬化體之離子擴散行為研究」,國立成功大學研究所碩士論文,1988。
[10] 張元犧,「儲氣田氣井套管水泥之應力分析」國立成功大學資源工程研究所碩士論文,2005。
[11] 張景富、王宇、徐明、趙強,「二氧化碳腐蝕對油井水泥石抗壓強度的影響」,矽酸鹽學報,37(4),2009。
[12] 龔人俠,「水泥化學概論」,台灣區水泥工業同業公會,1977。
[13] Allen, J. A., and P. H. Scaife,“The Elovich Equation and chemisorption kinetics,” Nature, 216( 5121), 1204-1205, 1967.
[14] American Petroleum Institute (API), Recommended Practice for Testing Well Cements; API Recommended Practice 10B, p 133; API: Washington, DC, 1997.
[15] API, Background Report,“Summary of Carbon Dioxide Enhanced Oil Recovery (CO2 EOR) Injection Well Technology,”2007.
[16] Barlet-Gouédard, V., G. Rimmelé, B. Goffé, and O. Porcherie, “Mitigation strategies for the risk of CO2 migration through wellbores,”SPE 98924, 2006.
[17] Barlet-Gouédard , V., G. Rimmelé, B. Goffé, O. Porcherie,“Well technologies for CO2 geological storage: CO2-resistant cement,” Oil and Gas Science and Technology, 62 (3), 325–334, 2007
[18] Bensted John,“Oilwell Cement,”World Cement, 20(10),346-357, 1989.
[19] Carde, C., R. Franqois , and J.M. Torrenti ,“Leaching of both calcium hydroxide and C-S-H from cement paste: modeling the mechanical behavior,”Cement and Concrete Research, 28(8), 1257-1268, 1996.
[20] Carde, C. and R. Francois,“Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties,” Cement and Concrete Research ,27(4),539-550 ,1997.
[21] Carey, J. W., M. Wigand , S. J. Chipera, G. Wolde-Gabriel, R. Pawar, P. C. Lichtner, S. C. Wehner, M. A. Raines, and G. D. Guthrie, “Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC unit,” Int. J. Greenhouse Gas Control, 1 (1), 75–85, 2007.
[22] Crow, W., D.W. Williams, J.W. Carey, M. Celia , and S. Gasda,“CO2 capture project field study of a wellbore from a natural CO2 reservoir,”Carbon Capture and Sequestration Conference, 2008.
[23] Crow, W., D.W. Williams, J.W. Carey, M. Celia, and S. Gasda,“Wellbore integrity analysis of a natural CO2 producer,”International Journal of Greenhouse Gas Control, 4(4), 2009.
[24] Duguid, A., M. Radonjic ,and G. W. Scherer,“The effect of carbonated brine on the interface between well cement and geologic formations under diffusion-controlled conditions,”8th International Conference on Greenhouse Gas Control Technologies, 2006.
[25] Housta, Y. F. and F. H. Wittmann,“Depth profiles of carbonates formed during natural carbonation,”Cement and Concrete Research, 32(12), 1923–1930, 2002.
[26] Juang, R-S. and Chen M-L.,“Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins,” Ind. Eng. Chem. Res. , 36(3), 813–820, 1997.
[27] Kutchko, B. G., B. R. Strazisar, D. A. Dzombak, G. V. Lowry , and N. Thaulow,“Degradation of well cement by CO2 under Geologic sequestration conditions,”Environmental Science &Technology , 41(13), 4787–4792, 2007.
[28] Kutchko, B. G., B. R. Strazisar, G. V. Lowry, D. A. Dzombak, and N. Thaulow,“Rate of CO2 attack on hydrated Class H well cement under geologic sequestration conditions,”Environmental Science &Technology, 42 (16), 6237–6242, 2008.
[29] Kutchko, B. G., B. R. Strazisar, N. Huerta, G. V. Lowry, D. A. Dzombak, and N. Thaulow,“CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures,”Environmental Science &Technology, 43(10), 3947–3952, 2009.
[30] Liteanu, E., C. J. Spiers, and C. J. Peach,“ Failure behavior wellbore cement in the presence of water and supercritical CO2,”Energy Procedia, 1(1), 2009.
[31] Organ, B. E. and G. K. Dumbauld,“Recent developments in the use of bentonite cement,”API , 53-163 ,1953.
[32] Onan, D.D.,“Effects of supercritical carbon dioxide on well cements,”Permian Basin Oil and Gas Recovery Conference, Midland Texas: Society of Petroleum Engineers of AIME, 1984.
[33] Rimmelé, G. , V. Barlet-Gouédard, O. Porcherie, B. Goffé, and F. Brunet,“Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids,” Cement and Concrete , 38(8-9), 1038–1048, 2008.
[34] Shen , J.C.,“Effects of CO2 attack on cement in high-temperature
applications,”SPE 18618-MS, 1989.
[35] Shtepenko O., C. Hills, and A. Brough,“The effect of carbon dioxide on β-dicalcium silicate and Portland cement,”Chemical Engineering Journal, 118(1-2),107-118, 2006.
[36] Santra, A., B. R. Reddy, Feng Liang, and R. Fitzgerald,“Reaction of CO2 with Portland Cement at Downhole Conditions and the Role of Pozzolanic Supplements,”SPE 121103, 2009.
[37] Sweatman, R.E., A. Santra, D.S. Kulakofsky, Halliburton,
and D.G. J. Calvert, and Consultant, “Effective zonal isolation for CO2 sequestration wells,” SPE 126226, 2009.
[38] Toews, K. L., R. M. Shroll, and C. M. Wai,“pH-Defining equilibrium between water and supercritical CO2 influence on SFE of organics and metal chelates,”Analytical Chemistty, 67( 22), 1995(9).
[39] Teng H. and Hsieh C.-T.,“Activation energy for Oxygen Chemisorption on carbon at Low temperatures,”Ind. Eng. Chem. Res. 38(1), 292–297, 1999.
[40] Wilson, C.,“ Gel cement and their application in oil-well cementing operations,”API, 41-293,1941.
[41] Xu Chao, Huang Liang, Xing Hao-feng,“Influence of cement-bentonite slurry mixing ratio on permeability of cutoff wall,” Rock and Soil Mechanics, 31(2), 422-426, 2010.
[42] Zhenhao Duan , and Rui Sun, “An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar,”Chemical Geology, 193(3-4), 257– 271, 2003.