簡易檢索 / 詳目顯示

研究生: 林永鎔
Lin, Yung-Jung
論文名稱: 粒子尺寸及形狀對乾燥顆粒物質之巨觀力學影響
Influence of Granulometry on Macroscopic Mechanical Characteristics of Dry Granular Matter
指導教授: 方中
Fang, Chung
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 172
中文關鍵詞: 顆粒尺寸及形狀乾燥顆粒物質力學行為
外文關鍵詞: Granulometry, Dry granular matter, Mechanical behavior
相關次數: 點閱:62下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究主題為粒子尺寸及形狀對乾燥顆粒物質之巨觀力學影響,論文分成三個部分:1.顆粒阻塞,在阻塞機制中,顆粒和漏槽的幾何性質影響堆積和流動的情況。2. 膠結劑排列方式和顆粒分布對鐵路道碴顆粒內膠結劑分布的影響。3.由微細玻璃顆粒的往復軸壓來探討室溫下的燒結現象。

    顆粒阻塞:
    實驗中以壓克力製造的二維靜態和旋轉漏槽來進行橢圓顆粒的近似二維流動。以壓克力製造的橢圓有五種不同的外觀比例:1.0、1.5、2.0、2.5和3.0。在靜態漏槽中,顆粒在漏槽內靜態堆積後,把開口打開讓顆粒流動。而旋轉漏槽是藉由漏槽的旋轉讓顆粒流動。實驗的觀察包含阻塞機率和成拱顆粒數等。無因次化的開口為開口尺寸和橢圓短軸方向距離的比值。

    在靜態漏槽中,阻塞情形主要受到顆粒初始堆積結構的影響。顆粒的外觀比例和漏槽坡度影響堆積結構。對於顆粒外觀比例,增加外觀比例會增加平緩坡度上的阻塞機率,但在較陡的坡度則呈現波動的狀態。這是因為較陡的坡影響顆粒旋轉較多,因此外觀比例大的顆粒被影響較多。對於漏槽坡度,增加漏槽坡度會減少阻塞的機率和成拱的顆粒數。在坡度較陡的漏槽中,顆粒堆積結構較不穩定,強力鍊較難形成。強的力鍊較可能在接近開口而流動通道減小的時候,藉由顆粒之間的擠壓接觸而形成。在較大漏槽開口和較大坡度的時候,成拱顆粒數隨著外觀比例增加而增加,因為此時橢圓顆粒以接近短軸的地方接觸形成力鍊。對於阻塞結果來說,橢圓外觀比例和漏槽坡度兩者會相互影響。

    在旋轉漏槽中,阻塞情形主要受到流動空間縮小的影響。漏槽開口寬度和坡度是造成流動空間縮小的原因。坡度60度的漏槽影響橢圓顆粒的旋轉。對於橢圓外觀比例,增加外觀比例會增加阻塞機率和成拱顆粒數。因為較細長的橢圓有較多可能接觸的形式,且橢圓顆粒多以接近短軸的地方接觸形成力鍊。對於較大的開口,拱形會較為對稱。因為較大的開口需要較多顆粒形成拱,較對稱的拱形能提升拱的穩定度。

    在靜態和旋轉漏槽中,顆粒經歷了不同的初始狀態。在靜態漏槽中,阻塞情形主要受到顆粒初始堆積結構的影響。而旋轉漏槽中,阻塞情形主要受到流動過程中流動空間縮小的影響。兩者之間的差異影響了不同外觀比例橢圓顆粒的阻塞情形。

    鐵路道碴顆粒內的膠結劑分布:
    鐵路道碴顆粒內的膠結劑分布以數值模擬軟體ANSYS©來模擬。使用anti-thixotropic的非牛頓流體來說明膠結劑的凝固現象。模擬為暫態分析。研究中以兩種模型來模擬道碴顆粒:八面體模型和混合的多面體模型。其中第二種為遵循真實鐵路道碴規範的模型。藉由不同的膠結劑凝固速度、膠結劑配置和顆粒分布來觀察鐵路道碴顆粒內的膠結劑分布情形。

    八面體顆粒模型部分,從模擬結果得知凝固速度影響膠結劑的垂直延伸。對於不同的膠結劑配置,當膠結劑集中一桶澆注的時候,膠結劑難以側向延伸到接近道碴顆粒容器壁的位置,但可以延伸到較深的地方。當膠結劑配置為矩陣分散的話,則情況相反。因此透過膠結劑矩陣配置,加上調整膠結劑的量,可達到較全面的膠結劑分布。在類似真實道碴顆粒的模型方面,從模擬結果得知膠結劑網狀排列的膠結劑分布範圍較矩陣排列廣。固定膠結劑為網狀配置的話,顆粒均勻分布的情況下膠結劑能延伸到較深的位置。這是因為在道碴顆粒堆底部的顆粒,在顆粒均勻分布下的平均顆粒尺寸較顆粒尺寸分層的大,顆粒之間的孔隙也較大,膠結劑能延伸到較深的位置。

    因此,膠結劑的凝固速度影響膠結劑在道碴顆粒內垂直方向的延伸,而側向的延伸則是受到膠結劑配置的影響。除此之外,如果在道碴顆粒尺寸分層的情況下進行澆注的話,則膠結劑的分布範圍會因此減少。

    微細玻璃顆粒的往復軸壓:
    微細玻璃顆粒的往復軸壓以數值模擬軟體ANSYS©來研究,探討室溫下壓縮導致的燒結現象。玻璃為一種非晶體材料。研究中微細玻璃顆粒被考慮為等向的彈塑性固體,應力應變關係採用雙線性模組。藉由不同的顆粒配置、絕熱條件和壓縮週期來觀察溫度和壓力的提升是否足以讓燒結發生。

    絕熱條件和壓縮週期影響熱傳和溫度數值。在往復軸向壓縮的過程中,顆粒接觸點附近的溫度較高應力較大,提供兩個驅使燒結的機制。當接觸的玻璃球為不同尺寸或者同時和較多玻璃球接觸的時候,溫度和應力的提升更為明顯。

    然而,並非所有玻璃球都會發生燒結。滿足以下條件的玻璃球有較高的可能性發生燒結: A.在力鍊上、B.經歷連續壓縮、C.較少的熱流失。在熱流失的部分,雖然實際上在壓縮的過程中要完全絕熱較難達成,仍可藉由縮短壓縮週期來減少熱的流失。

    The present study studies the influence of granulometry on macroscopic mechanical characteristics of dry granular matter. The thesis is divided into three parts: 1. Particle jamming, in depositing and flow circumstances for the influences of geometric properties of particle and hopper in jamming mechanism. 2. Gluing solution distribution in a railway ballast for the influences of the gluing solution layouts and the distributions of gravels. 3. Tiny glass beads in oscillating diametric compression to interpret the sintering at room temperature.

    Particle jamming:
    Two-dimensional static and rotating hoppers of Plexiglas are constructed to conduct quasi two-dimensional flows of elliptical disks in experiments. The disks of Plexiglas are made with varied aspect ratios of [1.0, 1.5, 2.0, 2.5 and 3.0]. In static hoppers, the disks are deposited into the hoppers and flow by removing the obstacle of opening. In rotating hoppers, the disks flow by a rotation of the hopper. The observation of experiments includes jamming probability and disk number consisting of arches. The dimensionless hopper opening is a ratio of opening size and shorter axis of the elliptical disks.

    In static hoppers, jamming is mainly influenced by the initial depositing structures of the disks. Aspect ratio of the disks and the hopper slope affect the structures. For aspect ratios, increasing aspect ratio increases the jamming probability for gentle hopper slopes, but fluctuations occur for steeper slopes. This is because a steeper slope affects disk rotations more. Then, the disks of large aspect ratio are influenced more. For hopper slopes, increasing hopper slope decreases the jamming probability and the disk number of jamming arches. In the hoppers of steeper slopes, the depositing structures of the disks are more unstable and strong force chains are hardly formed. Strong force chains are more likely formed under the contraction of the flow passage because of the solid contacts. For steeper hoppers and larger openings, the disk number of jamming arches increases as the aspect ratio increases because of force chains along the shorter axes of elliptical disks. For jamming results, aspect ratios of the disks and hopper slopes can affect mutually.

    In rotating hoppers, jamming is mainly caused by the contraction of the flow passage. Hopper opening width and slope are the causes of the contraction. The hopper slopes of 60° affect the rotation of the elliptical disks. For aspect ratios, increasing aspect ratio increases jamming probability and the disk number of jamming arches. The elongated disks have more possible disk-disk contact forms and the force chains mostly form along the direction close to the shorter axes of elliptical disks. For larger openings, the arch formation of the disks is more symmetrical. The larger opening means more disks to form an arch. The more symmetrical arch formation can improve the stability of the arches.

    The disks in static hoppers or rotating hoppers experience different initial status. In static hoppers, jamming is mainly influenced by the initial depositing structures of the disks. In rotating hoppers, jamming is mainly influenced by the contraction of the flow passage during flows. This difference affects the jamming results of various aspect ratios.

    Gluing solution distribution in a railway ballast:
    The distribution of gluing solution in railway ballast is investigated by numerical simulation ANSYS©. The anti-thixotropic non-Newtonian fluid is proposed to illustrate the solidification process of gluing solution phenomenologically. The simulation is transient analysis. There are two ballast models to simulate realistic ballast: the octahedral model and the mixed polyhedral model. The second model follows the regulations in railway ballast practice. Different solidification speed, the layouts of gluing solution and the distributions of gravels are considered to observe the distributions of gluing solution in ballast models.

    In the simulations of the octahedral model, the solidification speed affects the vertical extension of gluing solution. For the layouts of gluing solution, when the layout was single unit in the middle, the gluing solution cannot extend laterally to the ballast gravels near container walls, but it can extend deeply. When layout was matrix, it is an opposite situation. The matrix layouts with adjusted solution amount can achieve more comprehensive distributions of gluing solution.

    In the simulations of the mixed polyhedral model, the network layouts provide wider distributions of gluing solution than the matrix layouts. For fixed layouts of network, when the distributions of gravels were uniform, the gluing solution can extend deeply. This is because the average gravel size of uniform distribution is larger than size segregation at the bottom of the ballast gravels, which makes the voids between gravels larger. Therefore, the gluing solution can relatively extend to the deeper position.

    The solidification speeds affect the vertical extension of gluing solution. The lateral extension is influenced by the layouts of gluing solution. Further, if the gravels in the ballast models were size-segregated, the distribution area of gluing solution is reduced.

    Tiny glass beads in oscillating diametric compression:
    Tiny glass beads in oscillating diametric compression is investigated by numerical simulation ANSYS© to interpret the sintering induced by the compression at room temperature. Glass is an amorphous material. The tiny glass beads are considered as isotropic elasto-plastic solids. The stress-strain relation uses the bilinear model. Different particle configurations, diatheraml conditions and compression periods are considered to observe if the temperature and stress rises are sufficient for sintering.

    The diathermal conditions and compression periods affect the heat transfer and temperature values. During compression cycles, the temperature and stress values near the contact points of glass beads are larger, which provides two driving mechanisms for sintering. When the glass beads were in contact with different size neighbors or with more neighbors simultaneously, the temperature and stress rise more.

    However, not all glass beads can experience sintering. The glass beads satisfying below conditions have a higher probability: A. in the force chains, B. under continuous compression, and C. less heat loss. Although adiabatic condition is hard to achieve during compression process in reality, it still can reduce the heat loss by shortening the compression period.

    摘要 i Abstract iii 致謝 xi 目錄 xii 表目錄 xvi 圖目錄 xvii 第1章 顆粒物質 1 1.1 顆粒物質定義 1 1.2 類固體相關性質 2 1.2.1 堆積顆粒內部的應力分布 2 1.2.2 剪脹性 3 1.2.3 能量耗損 3 1.2.4 傾角 4 1.2.5 顆粒阻塞 5 1.3 類流體相關性質 6 1.3.1 相態 6 1.3.2 對流滾動 7 1.3.3 表面圖案 8 1.3.4 群集和結晶 10 1.3.5 顆粒分層 10 1.3.6 顆粒流動對於河岸和設施的影響 13 1.4 研究動機 15 1.5 論文架構 16 第2章 文獻回顧和相關理論 19 2.1 顆粒在漏槽中的流動和阻塞 19 2.1.1 靜態沉降阻塞和流動阻塞 20 2.1.2 流動和阻塞的相關研究 22 2.2 鐵路道碴顆粒膠結 26 2.2.1 鐵路道碴顆粒 26 2.2.2 流動模型 27 2.2.3 道碴膠結劑 31 2.3 微細玻璃顆粒的擠壓聚合 32 2.3.1 玻璃的熱相關性質 32 2.3.2 Frenkel’s model的機械等效模型 34 2.3.3 玻璃的應力應變曲線 36 2.4 橢圓顆粒因外觀比例不同導致的顆粒分層 38 第3章 靜態沉降阻塞現象 41 3.1 問題說明 41 3.2 靜態漏槽製作 41 3.3 理論說明 45 3.4 實驗流程和設定 49 3.5 結果和討論 53 3.5.1 漏槽開口大小 53 3.5.2 橢圓顆粒的外觀比例 54 3.5.3 漏槽坡度 58 3.5.4 結論 60 第4章 流動阻塞現象 75 4.1 問題說明 75 4.2 實驗概念和設計 75 4.3 實驗流程和設定 80 4.4 結果和討論 83 4.4.1 漏槽開口大小 83 4.4.2 橢圓顆粒的外觀比例 84 4.5 靜態沉降阻塞和流動阻塞的比較 89 4.5.1 阻塞率的比較 90 4.5.2 拱顆粒數的比較 93 4.5.3 跨距的比較 95 4.5.4 兩種阻塞現象總結 97 第5章 鐵路道碴膠結模擬 99 5.1 問題說明 99 5.2 理論說明 99 5.3 顆粒生成方式 101 5.4 模擬操作流程 102 5.5 模擬設定 104 5.5.1 道碴顆粒性質與分布情形設定 104 5.5.2 膠結劑配置方式設定 105 5.5.3 網格與邊界條件設定 107 5.5.4 Fluent前處理設定 108 5.6 結果和討論 109 5.6.1 八面體顆粒模型 109 5.6.2 類似真實道碴顆粒模型 114 5.6.3 顆粒分層對道碴膠結的影響 118 第6章 微細玻璃顆粒於往復軸壓下的聚合現象 119 6.1 問題說明 119 6.2 理論說明 120 6.3 模擬操作流程 120 6.4 模擬設定 121 6.4.1 顆粒材質與配置 121 6.4.2 網格和邊界條件設定 122 6.4.3 熱固耦合 124 6.5 結果和討論 125 6.5.1 兩顆大小相同顆粒 125 6.5.2 兩顆大小不同顆粒 133 6.5.3 三顆大小相同顆粒 140 6.5.4 不同顆粒配置的比較 154 第7章 結論和未來展望 157 7.1 前言 157 7.2 靜態沉降阻塞現象 157 7.3 流動阻塞現象 159 7.4 靜態沉降阻塞和流動阻塞的結果比較 160 7.5 鐵路道碴膠結模擬 161 7.6 微細玻璃顆粒於往復軸壓下的聚合現象模擬 162 7.7 顆粒尺寸和形狀對於巨觀力學性質的影響 164 7.8 未來展望 165 參考文獻 167

    [1] 陳進旺, "橢圓顆粒長寬比對二維旋轉漏槽阻塞機率影響之實驗研究,"碩士論文, 國立成功大學, 2015.
    [2] Lin, Y.-J., and Fang, C., "Experimental Study on Depositing Arch Jamming of Elliptical Disks in a Two-Dimensional Static Hopper," Journal of Mechanics, FirstView, pp. 1-8, 2016.
    [3] Lin, Y.-J., Fang, C., and Chen, C.-W., "On Influence of Aspect Ratio on Jamming Probability for Flows of Elliptical Disks in a Two-dimensional Rotating Hopper," British Journal of Applied Science & Technology, 14(3), pp. 1-8, 2016.
    [4] 郭銓, "鐵路道碴膠結模擬,"碩士論文, 國立成功大學, 2014.
    [5] 陳柏辰, "真實鐵路道碴分層現象對道碴膠結劑分布影響之研究,"碩士論文, 國立成功大學, 2015.
    [6] Fang, C., Lee, Y., Kuo, C.-M., Lin, Y.-J., and Kuo, C., "Anti-thixotropic non-Newtonian fluid in complex conduct: gluing process simulation of railway ballast," Applied Rheology, 25, p. 14381, 2015.
    [7] Fang, C., Lee, Y., Lin, Y.-J., Lu, L.-S., and Chen, P.-C., "On influence of particle segregation on gluing solution distribution in realistic railway ballasts," Applied Rheology, (in review) , 2016.
    [8] Fang, C., Lee, Y., Lin, Y.-J., Lu, L.-S., and Chen, P.-C., "Influence of gluing solution layout on gluing solution distribution in a realistic railway ballast," International Journal of Geomechanics, (in press) , 2016.
    [9] 陳彥宏, "微細玻璃顆粒於往復軸壓下之聚合現象研究,"碩士論文, 國立成功大學, 2015.
    [10] Fang, C., Wu, W., Lin, Y.-J., Chen, Y.-H., and Doanh, T., "On sintering of tiny glass beads in oscillating diametric compression," Granular Matter, (in review) , 2016.
    [11] Kudrolli, A., "Size separation in vibrated granular matter," Reports on Progress in Physics, 67(3), p. 209, 2004.
    [12] 陳銘鴻, "土壤液化成因、災害與復建," 臺灣之活動斷層與地震災害研討會, p. 107-123, 2002.
    [13] Pöschel, T., and Schwager, T., Computational Granular Dynamics - Models and Algorithms, Springer Berlin Heidelberg, 2005.
    [14] Cates, M. E., Wittmer, J. P., Bouchaud, J. P., and Claudin, P., "Jamming, Force Chains, and Fragile Matter," Physical Review Letters, 81(9), pp. 1841-1844, 1998.
    [15] Peters, J. F., Muthuswamy, M., Wibowo, J., and Tordesillas, A., "Characterization of force chains in granular material," Physical Review E, 72(4), p. 041307, 2005.
    [16] 孫其誠、王光謙, "靜態堆積顆粒中的力鍊分布," 物理學報, 57(8), pp. 4667-4674, 2008.
    [17] Zuriguel, I., and Mullin, T., "The role of particle shape on the stress distribution in a sandpile," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 464(2089), pp. 99-116, 2008.
    [18] Howell, D., Behringer, R. P., and Veje, C., "Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition," Physical Review Letters, 82(26), pp. 5241-5244, 1999.
    [19] Duran, J., Sands, Powders, and Grains - An Introduction to the Physics of Granular Materials, Springer-Verlag New York, 2000.
    [20] Mizuno, T., "Device for minimizing earthquake shocks to a small building ", United States Patent 6085474 (from http://www.freepatentsonline.com) , 2000.
    [21] Ristow, G. H., Pattern Formation in Granular Materials, Springer-Verlag Berlin Heidelberg, 2000.
    [22] To, K., Lai, P.-Y., and Pak, H. K., "Flow and jam of granular particles in a two-dimensional hopper," Physica A: Statistical Mechanics and its Applications, 315(1–2), pp. 174-180, 2002.
    [23] 孫其誠、王光謙, 顆粒物質力學導論, 科學出版社, 北京, 2009.
    [24] Clément, E., and Rajchenbach, J., "Fluidization of a Bidimensional Powder," EPL (Europhysics Letters), 16(2), p. 133, 1991.
    [25] Melo, F., Umbanhowar, P., and Swinney, H. L., "Transition to parametric wave patterns in a vertically oscillated granular layer," Physical Review Letters, 72(1), pp. 172-175, 1994.
    [26] Umbanhowar, P. B., Melo, F., and Swinney, H. L., "Localized excitations in a vertically vibrated granular layer," Nature, 382(6594), pp. 793-796, 1996.
    [27] Betat, A., Dury, C. M., Rehberg, I., Ristow, G. H., Scherer, M. A., Schröter, M., and Straßburger, G., "Formation of Patterns in Granular Materials," Evolution of Spontaneous Structures in Dissipative Continuous Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 495-545, 1998.
    [28] Olafsen, J. S., and Urbach, J. S., "Clustering, Order, and Collapse in a Driven Granular Monolayer," Physical Review Letters, 81(20), pp. 4369-4372, 1998.
    [29] Jullien, R., Meakin, P., and Pavlovitch, A., "Jullien, Meakin, and Pavlovitch reply," Physical Review Letters, 70(14), pp. 2195-2195, 1993.
    [30] Duran, J., Rajchenbach, J., and Clément, E., "Arching effect model for particle size segregation," Physical Review Letters, 70(16), pp. 2431-2434, 1993.
    [31] Knight, J. B., Jaeger, H. M., and Nagel, S. R., "Vibration-induced size separation in granular media: The convection connection," Physical Review Letters, 70(24), pp. 3728-3731, 1993.
    [32] Clément, E., Rajchenbach, J., and Duran, J., "Mixing of a Granular Material in a Bidimensional Rotating Drum," EPL (Europhysics Letters), 30(1), p. 7, 1995.
    [33] Das Gupta, S., Khakhar, D. V., and Bhatia, S. K., "Axial segregation of particles in a horizontal rotating cylinder," Chemical Engineering Science, 46, pp. 1513-1517, 1991.
    [34] Yanagita, T., "Three-Dimensional Cellular Automaton Model of Segregation of Granular Materials in a Rotating Cylinder," Physical Review Letters, 82(17), pp. 3488-3491, 1999.
    [35] Makse, H. A., "Stratification instability in granular flows," Physical Review E, 56(6), pp. 7008-7016, 1997.
    [36] Makse, H. A., and Herrmann, H. J., "Microscopic model for granular stratification and segregation," EPL (Europhysics Letters), 43(1), p. 1, 1998.
    [37] Jakob, M., and Hungr, O., Debris-flow Hazards and Related Phenomena, Springer Berlin Heidelberg, 2005.
    [38] Tai, Y.-C., Wang, Y., Gray, J. M. N. T., and Hutter, K., "Methods of similitude in granular avalanche flows," Advances in Cold-Region Thermal Engineering and Sciences: Technological, Environmental, and Climatological Impact Proceedings of the 6th International Symposium Held in Darmstadt, Germany, 22–25 August 1999, K. Hutter, Y. Wang, and H. Beer, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 415-428, 1999.
    [39] Hoang, M. T., "Frottement saccadé dans les matériaux granulaire modèles,"PhD Thesis, L’Institut National des Sciences Appliquées de Lyon, France, 2011.
    [40] Doanh, T., Hoang, M. T., Roux, J.-N., and Dequeker, C., "Stick-slip behaviour of model granular materials in drained triaxial compression," Granular Matter, 15(1), pp. 1-23, 2013.
    [41] Rahaman, M. N., Ceramic Processing, CRC/Taylor & Francis, Boca Raton, FL, 2007.
    [42] Dorbolo, S., Maquet, L., Brandenbourger, M., Ludewig, F., Lumay, G., Caps, H., Vandewalle, N., Rondia, S., Mélard, M., van Loon, J., Dowson, A., and Vincent-Bonnieu, S., "Influence of the gravity on the discharge of a silo," Granular Matter, 15(3), pp. 263-273, 2013.
    [43] Arevalo, R., and Zuriguel, I., "Clogging of granular materials in silos: effect of gravity and outlet size," Soft Matter, 12(1), pp. 123-130, 2016.
    [44] To, K., Lai, P.-Y., and Pak, H. K., "Jamming of Granular Flow in a Two-Dimensional Hopper," Physical Review Letters, 86(1), pp. 71-74, 2001.
    [45] Zuriguel, I., Pugnaloni, L. A., Garcimartín, A., and Maza, D., "Jamming during the discharge of grains from a silo described as a percolating transition," Physical Review E, 68(3), p. 030301, 2003.
    [46] Zuriguel, I., Garcimartín, A., Maza, D., Pugnaloni, L. A., and Pastor, J. M., "Jamming during the discharge of granular matter from a silo," Physical Review E, 71(5), p. 051303, 2005.
    [47] Pournin, L., Ramaioli, M., Folly, P., and Liebling, T. M., "About the influence of friction and polydispersity on the jamming behavior of bead assemblies," Eur. Phys. J. E, 23(2), pp. 229-235, 2007.
    [48] Fraige, F. Y., Langston, P. A., Matchett, A. J., and Dodds, J., "Vibration induced flow in hoppers: DEM 2D polygon model," Particuology, 6(6), pp. 455-466, 2008.
    [49] Janda, A., Zuriguel, I., Garcimartín, A., Pugnaloni, L. A., and Maza, D., "Jamming and critical outlet size in the discharge of a two-dimensional silo," EPL (Europhysics Letters), 84(4), p. 44002, 2008.
    [50] Jin, B., Tao, H., and Zhong, W., "Flow Behaviors of Non-spherical Granules in Rectangular Hopper," Chinese Journal of Chemical Engineering, 18(6), pp. 931-939, 2010.
    [51] Magalhães, C. F. M., Moreira, J. G., and Atman, A. P. F., "Catastrophic regime in the discharge of a granular pile," Physical Review E, 82(5), p. 051303, 2010.
    [52] Sheldon, H., and Durian, D., "Granular discharge and clogging for tilted hoppers," Granular Matter, 12(6), pp. 579-585, 2010.
    [53] Balevičius, R., Kačianauskas, R., Mróz, Z., and Sielamowicz, I., "Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes," Advanced Powder Technology, 22(2), pp. 226-235, 2011.
    [54] Mack, S., Langston, P., Webb, C., and York, T., "Experimental validation of polyhedral discrete element model," Powder Technology, 214(3), pp. 431-442, 2011.
    [55] Wang, J., Yu, H. S., Langston, P., and Fraige, F., "Particle shape effects in discrete element modelling of cohesive angular particles," Granular Matter, 13(1), pp. 1-12, 2011.
    [56] Kunte, A., Doshi, P., and Orpe, A. V., "Spontaneous jamming and unjamming in a hopper with multiple exit orifices," Physical Review E, 90(2), p. 020201, 2014.
    [57] Mankoc, C., Garcimartín, A., Zuriguel, I., Maza, D., and Pugnaloni, L. A., "Role of vibrations in the jamming and unjamming of grains discharging from a silo," Physical Review E, 80(1), p. 011309, 2009.
    [58] Zuriguel, I., Janda, A., Garcimartín, A., Lozano, C., Arévalo, R., and Maza, D., "Silo Clogging Reduction by the Presence of an Obstacle," Physical Review Letters, 107(27), p. 278001, 2011.
    [59] Alonso-Marroquin, F., Azeezullah, S. I., Galindo-Torres, S. A., and Olsen-Kettle, L. M., "Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?," Physical Review E, 85(2), p. 020301, 2012.
    [60] To, K., and Lai, P.-Y., "Jamming pattern in a two-dimensional hopper," Physical Review E, 66(1), p. 011308, 2002.
    [61] Matchett, A. J., "The shape of the cohesive arch in hoppers and silos — Some theoretical considerations," Powder Technology, 171(3), pp. 133-145, 2007.
    [62] Garcimartín, A., Zuriguel, I., Pugnaloni, L. A., and Janda, A., "Shape of jamming arches in two-dimensional deposits of granular materials," Physical Review E, 82(3), p. 031306, 2010.
    [63] Hidalgo, R. C., Lozano, C., Zuriguel, I., and Garcimartín, A., "Force analysis of clogging arches in a silo," Granular Matter, 15(6), pp. 841-848, 2013.
    [64] Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R. C., and Garcimartín, A., "Breaking Arches with Vibrations: The Role of Defects," Physical Review Letters, 109(6), p. 068001, 2012.
    [65] Frank, G. A., and Dorso, C. O., "Room evacuation in the presence of an obstacle," Physica A: Statistical Mechanics and its Applications, 390(11), pp. 2135-2145, 2011.
    [66] 鄭國雄、張思, 軌道工程, 大中國圖書公司, 1999.
    [67] "一四三五公厘軌距鐵路長銲鋼軌舖設及養護規範," 交通部, 2006.
    [68] Fang, C., Wang, Y., and Hutter, K., "A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material - I. On thermodynamically consistent evolution," Continuum Mech. Thermodyn., 19(7), pp. 423-440, 2008.
    [69] Fang, C., and Lee, C.-H., "A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material - II. Normal stress difference in a viscometric flow, and an unsteady flow with a moving boundary," Continuum Mech. Thermodyn., 19(7), pp. 441-455, 2008.
    [70] Fang, C., "Gravity-driven dry granular slow flows down an inclined moving plane: a comparative study between two concepts of the evolution of porosity," Rheol Acta, 48(9), pp. 971-992, 2009.
    [71] Fox, R. W., Pritchard, P. J., and McDonald, A. T., Introduction to fluid mechanics, John Wiley & Sons, Hoboken, NJ, 2010.
    [72] Shackelford, J. F., 彭立祥等 譯, 材料科學, 五南圖書出版股份有限公司, 2002.
    [73] 田英良、孫詩兵, 新編玻璃工藝學, 中國輕工業出版社, 北京, 2011.
    [74] Frenkel, J., "Viscous flow of crystalline bodies under the action of surface tension," Journal of Physics USSR, 9, pp. 385-391, 1945.
    [75] Skorokhod, V. V., "Development of the ideas of Ya. I. Frenkel' in the contemporary rheological theory of sintering," Powder Metallurgy and Metal Ceramics, 34(9), pp. 521-527, 1996.
    [76] Yadha, V., and Helble, J. J., "Modeling the coalescence of heterogenous amorphous particles," Journal of Aerosol Science, 35(6), pp. 665-681, 2004.
    [77] Ristić, M. M., and Milosević, S. D., "Frenkel's Theory of Sintering," Science of Sintering, 38, pp. 7-11, 2006.
    [78] Wang, X.-Y., Tang, N., Zheng, Z.-Z., Tang, Y.-Y., Li, J.-J., and Liu, L., "A Maxwell-pulse constitutive model of Zr55Cu30Al10Ni5 bulk metallic glasses in supercooled liquid region," Journal of Alloys and Compounds, 509(5), pp. 2518-2522, 2011.
    [79] Anand, L., and Su, C., "A constitutive theory for metallic glasses at high homologous temperatures," Acta Materialia, 55(11), pp. 3735-3747, 2007.
    [80] Jun, H. J., Lee, K. S., Kato, H., Kim, H. S., and Chang, Y. W., "Constitutive model for high temperature deformation behavior of Ti–Zr–Ni–Be bulk metallic glass in supercooled liquid region," Computational Materials Science, 61, pp. 213-223, 2012.
    [81] 林永鎔, "二維圓-橢圓顆粒混合物於垂直振動下之分離現象研究,"碩士論文, 國立成功大學, 2009.
    [82] Lee, Y., Fang, C., Tsou, Y.-R., Lu, L.-S., and Yang, C.-T., "A packing algorithm for three-dimensional convex particles," Granular Matter, 11(5), pp. 307-315, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE