| 研究生: |
吳建霖 Wu, Jian-Lin |
|---|---|
| 論文名稱: |
脈衝雷射於接觸式球鏡及金屬薄板間之塑性變形研究 The plastic deformation of the thin metallic plate by a pulsed laser on a contact ball-lens |
| 指導教授: |
林震銘
Lin, Jehn-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 脈衝雷射 、接觸球鏡 、金屬成型 |
| 外文關鍵詞: | Pulsed laser, Contact ball-lens, Metal forming |
| 相關次數: | 點閱:55 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要係探討脈衝雷射於接觸式球鏡作用下,引發金屬薄板塑性變形之研究。實驗方面,使用具有高斯模態之Nd-YAG雷射作為加工熱源,以離焦方式進行金屬薄板之成型加工,並藉由壓電轉換器(PZT)及荷重感測器,量測成型過程中,因雷射所引發之應力波與三維運動平台所施加之z軸預壓應力,建立一系列之製程參數,討論影響金屬薄板成型的主要因素。
數值分析分為兩個部分,首先,使用光學設計軟體ZEMAX,確認雷射光學系統之可行性,計算加工過程雷射之光斑尺寸並與實驗作比較。第二部分,利用有限元素軟體ABAQUS,建立二維軸對稱模型以熱機非偶合之分析方式,預測雷射成型期間之製程溫度、應力、應變及變形場。
本研究結果顯示,光學方面,雷射光斑尺寸會因焦長及脈衝作用時間增加而擴大,而功率密度則會隨焦長增加而降低;熱傳方面,雷射引發之溫度分佈會隨著功率及脈衝作用時間增加而增加,但試件厚度增加不影響最後的熱傳分析結果;金屬成型方面,試件之成形輪廓會隨著雷射功率、脈衝作用時間及預壓應力之增加而變大,但會因厚度增加而減小,且隨著不同負載條件的變化,兩種負載同時施加造成的變形會是單純一種負載引發變形的數倍不等。
The aim of this study is to investigate the plastic deformation of the thin metallic plate by a pulsed laser on a contact ball-lens numerically and experimentally. In the numerical analysis, the feasibility of the laser optical system was verified by the software ZEMAX. The computational results of the spot size were compared with the experimental results. Furthermore the finite element method (FEM) was applied to simulate the two-dimensional model of the thermal-mechanical laser forming process.
In the experiment, a metallic plate was irradiated by a Nd-YAG laser through a ball-lens with Gaussian mode. The stress wave induced by the pulsed laser and the preload generated by the contact ball-lens were measured by piezoelectric transducer (PZT) and load cell simultaneously.
The experimental and numerical results shows that the plate deformation increases with the laser power, pulse duration and preload, but decreases with the increase of the plate thickness. With various preload conditions, it can be found that the plate deformation induced by both laser irradiation and preload was several times larger than the deformation induced by preload only.
[1]Lawrence J., Pou J., Low D. k. y., Toyserkani E., “Advances in laser materials processing”, Woodhead Publishing Ltd, 2010.
[2]Geiger M., Vollertsen F., “The Mechanisms of Laser Forming”, Annals of the ClRP, v42, p301-304, 1993.
[3]Ji Z., Wu S. C., “FEM simulation of the temperature field during the laser forming of sheet metal”, Journal of Materials Processing Technology, v74, p89-95, 1998.
[4]Chen G., Xu X., Poon C. C., Tam A. C., “Experimental and Numerical Studies on Microscale Bending of Stainless Steel with Pulsed Laser”, Transactions of the ASME, v66, p772-779, 1999.
[5]Kyrsanid A. K., Kermanidis T. B., Pantelakis S. G., “ Numerical and experimental investigation of the laser forming process”, Journal of Materials Processing Technology, v87, p281-290, 1999.
[6]Thomas H., “Development of irradiation strategies for 3D-laser forming”, Journal of Materials Processing Technology, v103, p102-108, 2000.
[7]Wu S. C., Ji Z., “FEM simulation of the deformation field during the laser forming of sheet metal”, Journal of Materials Processing Technology,
v121 , p269-272, 2002.
[8]Guan Y. J., Sun S., Zhao G. Q., Luan Y. G., “Finite element modeling of laser bending of pre-loaded sheet metals”, Journal of Materials Processing Technology, v142, p400-407,2003.
[9]Chen D. J., Wu S. C., Li M. Q., “Deformation behaviours of laser curve bending of sheet metals”, Journal of Materials Processing Technology, v148, p30-34, 2004.
[10]Shi Y. J., Yao Z. Q., Shen H., Hu J., “Research on the mechanisms of laser forming for the metal plate”, International Journal of Machine Tools & Manufacture , v46, p1689-1697, 2006.
[11]Yao Z. Q., Shen H., Shi Y. J., Hu J., “Numerical study on laser forming of metal plates with pre-loads”, Computational Materials Science, v40, p27-32 , 2007.
[12]Shen H., Hu J., Yao Z. Q., “Cooling effects in laser forming”, Materials Science Forum, v663-665, p58-63, 2011.
[13]White R. M., “Generation of Elastic Waves by Transient Surface Heating”, Journal of Applied Physics, v34, n12, p3559-3567, 1963.
[14]Anderholm N. C., “LASER-GENERATED STRESS WAVES”, Applied Physics Letters, v16, n3, p113-115, 1970.
[15]Yang L. C., “Stress waves generated in thin metallic films by a Q-switched ruby laser”, Journal of Applied Physics, v45, n6, p2601-2608, 1974.
[16]Fairand B. P., Clauer A. H., “ Effect of water and paint coatings on the magnitude of Laser-generated shocks”, Optics Communications, v18, n4, p588-591, 1976.
[17]Masse J. E., Barreau G., “Laser generation of stress waves in metal”, Surface and Coatings Technology, v70, p231-234, 1995.
[18]Couturier S., Rességuier T. d., Hallouin M., Romain J. P., Bauer F., “Shock profile induced by short laser pulses”, Journal of Applied Physics, v79, n12, p9338-9342, 1996.
[19]Huang S. M., Hong M. H., Luk’yanchuk B. S., Zheng Y. W., Song W. D., Lu Y. F., Chong T. C., “Pulsed laser-assisted surface structuring with optical near-field enhanced effects”, Journal of Applied Physics , v92, n5, p2495-2500, 2002.
[20]Hong M. H., Huang S. M., Luk’yanchuk B. S., Chong T. C., “Laser assisted surface nanopatterning”, Sensors and Actuators A, v108, p69-74, 2003.
[21]Hong M. H., Wang Z. B., Lukyanchuk B. S., Tan L. S., Chong T. C., “From Transparent Particle Light Enhancement to Laser Nanoimprinting”, JLMN-Journal of Laser Micro / Nanoengineering, v1, n1,p61-66, 2006.
[22]Khan A., Wang Z. B., Sheikh M. A., Whitehead D. J., Li L., “Parallel near-field optical micro/ nanopatterning on curved surfacesby transported micro-particle lens arrays”, Journal of Physics D: Applied Physics, v43, p1-6, 2010.
[23]張阜權,孫榮山,唐偉國, “光學”, 凡異出版社出版,1998.
[24]黃文祥, 長脈衝雷射引發金屬薄板應力現象之研究, 國立成功大學機械工程研究所碩士論文, 2010.
[25]丁勝懋, “雷射工程導論”, 中央圖書出版社出版,1988.
[26]Lv H., Shi B. R., Wu J. J., G. L. J., Liu A. M., “Fabrication of gradient refractive index ball lenses using the method of combination of ion exchanging and sagging”, Optics Communications, v276, p310-316, 2007.
[27]Van Aken R., “Single mode Fiber to planar waveguide coupling with ball lenses”, Eindhoven University of Technology Faculty of Electrical Engineering Telecommunications Division EC, 1991.
[28]Scruby C. B., Drain L. E., “Laser ultrasonics techniques and applications”, Adam Hilger , New York, 1990.
[29]Chen G., Xu X. F., “Laser-assisted microscale deformation of stainless steels and ceramics”, Proceedings of SPIE-The International Society for Optical Engineering , v 3274, p133-140, 1998.
[30]Kannatey-Asibu E., Elijah Kannatey-Asibu Jr., “Principles of Laser Materials Processing”, 1st, Wiley, 2009.
[31]Timoshenko S., Goodier J. N., “Theory of Elasticity”, 2nd ed
McGraw-Hill Book company,Inc ,1951.
[32]林黎柏, 表面粗度微接觸力學之研究, 國立成功大學機械工程研究所博士論文, 2006.
[33]王煒, ZEMAX光學軟體操作說明詳解, 2005.
[34]Kalpakjian S., Schmid S. R., “Manufacturing processes for engineering materials”, 4th ed., Prentice Hall, 2002.
[35]李坤洲, 雷射成型於薄板變形之分析及量測, 國立成功大學機械工程系碩士論文, 2001.
[36]Chen Y. B., Lu J., Ni X. W., “Thermal elasto-plastic stress analysis during laser heating of a metal plate”, Lasers in Material Processing and Manufacturing III, Proc. of SPIE, v6825, p6825c1-c9, 2008.
[37]愛發股份有限公司編著, “ABAQUS實務入門引導”, 全華科技圖書股份有限公司印行, 2005.