簡易檢索 / 詳目顯示

研究生: 杜國瑞
Tu, Kuo-Juei
論文名稱: 以射頻磁控濺鍍法合成赤鐵礦薄膜與奈米銀/赤鐵礦複合薄膜之特性分析與光催化特性之研究
Study on characterization and photocatalysis of hematite thin films and nano-Ag/hematite thin films by R.F. magnetron sputtering deposition
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 赤鐵礦薄膜奈米銀射頻磁控濺鍍法可見光光催化
外文關鍵詞: hematite, thin film, nano-Ag, R.F. magnetron sputtering deposition, photocatalysis under visible-light irradiation.
相關次數: 點閱:121下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由射頻磁控濺鍍法可成功地合成出赤鐵礦、奈米銀/赤鐵礦薄膜。針對赤鐵礦薄膜與奈米銀/赤鐵礦複合薄膜進行特性分析;之後把各薄膜作為光催化劑,測試薄膜在可見光下的光催化效率。在場發射掃描式電子顯微鏡(FE-SEM)的影像可發現:利用不同的濺渡時間,我們可合成出具不同晶粒大小(膜厚)的赤鐵礦薄膜;由EDS與ESCA可看到奈米金屬銀粒子確實存在複合薄膜中。從超導量子干涉振動儀的數據得知:奈米赤鐵礦薄膜的磁特性為順磁性或超順磁性,隨著膜厚增加,磁化強度也跟著變大。光催化實驗的結果證實:赤鐵礦薄膜在可見光下可有效的光催化亞甲基藍染劑,奈米銀/赤鐵礦複合薄膜因受到奈米銀粒子的影響,使得薄膜表面可反應之電子數量相對變少,造成光催化效率下降。主要原因可能為:1.因為奈米銀粒子之分佈密度太少,造成電荷轉移上之困難度,或部分的電子被捕捉困陷於中間層奈米銀粒子中。2.不能有效地分離電子電洞對。3.對可見光的吸收度下降。綜合上述結果,我們利用射頻磁控濺鍍法製備出的赤鐵礦薄膜可有效的應用在光催化有機染劑上,亦可應用於環境汙染處理上。

    Hematite (Fe2O3) thin films and nano-Ag/Fe2O3 thin films can be successfully fabricated using by R.F. magnetron sputtering deposition. After preparation of the thin films, the characterization and photocatalysis under visible-light irradiation are investigated. FE-SEM images show that hematite films with different grain size (thickness) can be synthesized by adjusting the deposition time; the metallic Ag nanoparticles are really formed in the Fe2O3 matrix examined by the EDS and ESCA analyses. Moreover, The specimens exhibit paramagnetic or super-paramagnetic behavior, and the magnetization increases with the increasing film thickness. All hematite films exhibit good photocatalytic ability under visible-light illumination, and the photocatalytic activity of hematite films increases with an increase of film thickness. This is because the hematite with a thicker film thickness has a rougher surface, which provides more reaction sites for photocatalysis. However, nano-Ag/Fe2O3 films have a less photocatalysis activity than hematite films, this may be due to a decrease of electron numbers for photocatalytic reaction. The possible reasons are as follows. 1. A lower distribution density of Ag nanoparticles in the Fe2O3 films is difficult for charge transfer during photocatalytic process. 2. The electron-hole pairs can not separate effectively in the nano-Ag/Fe2O3 composites. 3. The absorbance of vis-light decreases for nano-Ag/ Fe2O3 thin films. To sum up, this study suggests that hematite thin films are superior photocatalyst under visible-light irradiation, effective for the clean removal of organic dyes, and suitable for environmental treatment applications.

    目錄 中文摘要........................................I 英文摘要.............................................II 致謝...........................................IV 目錄.................................................V 表目錄.............................................VII 圖目錄............................................VIII 第一章 序論................................................1 1-1 前言...........................................1 1-2 研究動機與目的.............................2 第二章 文獻回顧...........................................4 2-1 赤鐵礦之特性與用途.......................4 2-2 磁控濺鍍系統之原理........................6 2-2-1 直流輝光濺鍍......................7 2-2-2 射頻濺鍍..............................9 2-2-3 磁控濺鍍..........................10 2-2-4 反應式濺鍍........................11 2-3 光催化原理....................................12 2-3-1 半導體簡介........................12 2-3-2 光催化反應........................13 2-3-3 半導體的光催化反應....................16 2-3-4 半導體光催化劑之改善...............17 2-4 光催化動力學模式..........................17 2-5銀的基本性質與光催化劑摻有奈米銀之功用...................19 第三章 研究步驟與方法...............................21 3-1 實驗流程........................................21 3-2 實驗材料........................................22 3-3 靶材製作........................................23 3-4 基板準備........................................25 3-5 赤鐵礦薄膜之製備..........................26 3-6 赤鐵礦摻有奈米銀複合薄膜之製備........................27 3-7 樣品特性分析.................................31 3-7-1 X光繞射儀.........................31 3-7-2 場發射掃描式電子顯微鏡..........................31 3-7-3 電子分析光譜儀.......................32 3-7-4固態紫可見光光譜儀..................33 3-7-5 液態紫外光/可見光光譜儀..........................33 3-7-6 超導量子干涉振動磁量儀................................34 3-7-7 原子力顯微鏡............................35 3-8 光催化特性分析.............................36 3-8-1 不照光之光催化實驗................................36 3-8-2 可見光燈下之光催化實驗...............................37 第四章 結果與討論....................................38 4-1 不同厚度之赤鐵礦薄膜特性分析..................38 4-1-1 X光繞射之結果...................38 4-1-2 場發射掃瞄式電子顯微鏡之分析結果....................41 4-1-3 超導量子干涉振動磁量儀之分析結果.......................42 4-1-4 固態紫外光/可見光光譜儀之分析結果.....................44 4-1-5 原子力顯微鏡之實驗結果................................45 4-2 光催化實驗結果............................46 4-3 奈米銀/赤鐵礦複合薄膜之特性分析.....................49 4-3-1 X光繞射之結果..................49 4-3-2 場發射掃瞄式電子顯微鏡之分析結果......................51 4-3-3 超導量子干涉震動磁量儀之分析結果......................53 4-3-4 電子分析光譜儀之分析結果..............................54 4-3-5 固態紫外光/可見光光譜儀之分析結果..................55 4-3-6 原子力顯微鏡之實驗結果.............................55 4-4奈米銀/赤鐵礦複合薄膜之光催化結果..........................57 4-5 與前人文獻之比較..................................60 第五章結論................................................63 5-1 不同厚度赤鐵礦薄膜之光催化能力比較...................63 5-2 奈米銀/赤鐵礦複合薄膜之光催化能力比較....................63 5-3 單層赤鐵礦與複合薄膜之光催化能力比較................63 參考文獻.........................................65 表目錄 表 2-1 赤鐵礦的基本性質...........................................................................................5 表 2-2 銀的基本性質.................................................................................................20 表 3-1 赤鐵礦薄膜之製程參數.................................................................................29 表 3-2 單層赤鐵礦薄膜摻有奈米銀粒子之製程參數.............................................30 表 4-1 薄膜樣品代號對照表.....................................................................................38 表 4-2 單層赤鐵礦粒徑大小計算值.........................................................................41 表 4-3單層赤鐵礦XRD繞射峰強度與標準樣品比值............................................41 表 4-4 單層赤鐵礦光催化之實驗相關數據.............................................................49 表 4-5 複合薄膜粒徑大小計算值.............................................................................50 表 4-6複合薄膜樣品XRD繞射峰強度與標準樣品比值.........................................51 表 4-7 複合薄膜之光催化實驗數據.........................................................................60 表 4-8 赤鐵礦薄膜光催化性質之比較.....................................................................62 圖目錄 圖2-1 赤鐵礦的晶體結構示意圖................................................................................5 圖2-2 鐵氧化物的相圖................................................................................................6 圖2-3 濺鍍原理之示意圖............................................................................................7 圖2-4 直流輝光放電之示意圖....................................................................................8 圖2-5 陰極與陽極電位分布之示意圖........................................................................9 圖2-6射頻磁控濺鍍法之示意圖................................................................................10 圖2-7 磁控濺鍍法之示意圖......................................................................................11 圖2-8 反應式濺鍍法之示意圖..................................................................................12 圖2-9 導體、半導體與絕緣體之差異示意圖..........................................................13 圖2-10 光催化反應示意圖........................................................................................14 圖3-1 實驗流程圖......................................................................................................22 圖3-2 赤鐵礦靶材之燒結流程..................................................................................25 圖3-3複合薄膜製程示意圖.......................................................................................28 圖3-4亞甲基藍之檢量線...........................................................................................34 圖3-5 不照光下光催化實驗示意圖..........................................................................36 圖3-5 不照光之光催化實驗示意圖..........................................................................37 圖4-1 不同濺鍍時間之赤鐵礦薄膜的X光繞射圖譜..............................................40 圖4-2 單層赤鐵礦薄膜之SEM影像.........................................................................43 圖4-3 不同濺鍍時間下單層赤鐵礦薄膜的磁特徵曲線..........................................44 圖4-4 不同濺鍍時間下單層赤鐵礦薄膜對可見光的吸收度與能隙圖..................45 圖4-5 單層赤鐵礦薄膜之原子力顯微鏡影像..........................................................46 圖4-6 不同濺鍍時間之單層赤鐵礦薄膜的可見光光催化亞甲基藍之濃度降解圖......................................................................................................................48 圖4-7 不同濺鍍時間之單層赤鐵礦薄膜的可見光光催化亞甲基藍L-H模式分析圖.....................................................................................................................48 圖4-8 複合薄膜之X光繞射圖譜.............................................................................50 圖4-9 複合薄膜之表面形貌......................................................................................52 圖4-10 2H/Ag/2H複合薄膜的表面形貌....................................................................52 圖4-11 樣品Ag/4H之能量散佈光譜儀之分析圖譜................................................53 圖4-12 複合膜之磁特性曲線圖................................................................................54 圖4-13 銀的3d5/2與3d3/2的X光能譜分析圖..........................................................54 圖4-14 複合薄膜對可見光的吸收度與能隙圖........................................................55 圖4-15 複合薄膜之原子力顯微鏡影像....................................................................56 圖4-16 奈米銀/赤鐵礦複合薄膜的可見光光催化效率圖.......................................59 圖4-17 複合薄膜的可見光光催化之L-H模式分析圖..........................................59 圖4-18赤鐵礦單層膜與複合膜之光催化效果比較圖...........................................60

    參考文獻
    [1] J.M. Yu, J.M. Chen, J.D. Wang, "Removal of dichloromethane from waste gases by a biotrickling filter." Journal of Environmental Sciences (China) 18 , 1073-1076, 2006.

    [2] O.J. Prado, M.C. Veiga, C. Kennes, "Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters," Journal of Hazardous Materials 138 , 543-548, 2006.

    [3] D. Dong, X. Hua, Y. Li, J. Zhang, D. Yan, "Cd adsorption properties of compone-
    nts in different freshwater surface coatings: The important role of ferromanganese oxides", Environmental Science and Technology 37 , 4106-4112, 2003.

    [4] K.Y. Sui, D. Xie, S. Gao, Z.M. Wu, W.W. Wu, Y.Z. Xia, "Preparation and adsorption properties of sodium alginate/multiwalled carbon nanotubes complex gel beads
    ", Gongneng Cailiao/Journal of Functional Materials 41 , 268-270, 2010.

    [5] S. Chellammal, C.A. Basha, M. Raghavan, "Recycling of Chromium (VI) from Metal Finishing Wastewater using Electrochemical Ion Exchange (EIX) Method" Indian Journal of Environmental Protection 23 , 403-407, 2003.

    [6] I. Cretescu, M. Diaconu, A. Dughila, A. Stefanache, C. Pohontu, "Studies on the biosorption of terasil dye by aspergillus niger dead biomass", Environmental Engineering and Management Journal 9 , 335-339, 2010.

    [7] H. Eccles, "Treatment of metal-contaminated wastes: Why select a biological process?", Trends in Biotechnology 17 , 462-465, 1999.

    [8] W.K. Jo, J.T. Kim, "Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds", Journal of Hazardous Materials 164 , 360-366, 2009.

    [9] T. Maggos, A. Plassais, J.G. Bartzis, C. Vasilakos, N. Moussiopoulos, L. Bonafous, "Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels", Environmental Monitoring and Assessment 136 , 35-44 , 2008.

    [10] J. Feng, X. Hu, P.L. Yue, H.Y. Zhu, G.Q. Lu, "A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange II", Chemical Engineering Science 58 , 679-685, 2003.

    [11] S. Mozia, “Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review”, Separation and Purification Technology, 73 , 71–91, 2003.

    [12] U.I. Gaya, A.H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 ,1–12, 2008.

    [13] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, “Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media”, Journal of Photochemistry and Phot-
    obiology C: Photochemistry Reviews, 9, 171–192, 2008.

    [14] T.-T. Tseng, J.-Y. Uan, W.J. Tseng, "Synthesis, microstructure, and photocatalysis of In2O3 hollow particles", Ceramics International 37 , 1775-1780, 2011.

    [15] Z. Ding, W. Wu, S. Liang, H. Zheng, L. Wu, "Selective-syntheses, characterizations and photocatalytic activities of nanocrystalline ZnTa2O6 photocatalysts", Materials Letters 65 , 1598-1600, 2011.

    [16] Z. Yang, A. Zhou, "Effects of nitrogen doping on microstructure and photocatalytic activity of nanocrystalline TiO2 powders", Journal Wuhan University of Technology, Materials Science Edition 22 , 457-461 , 2007.

    [17] L.G. Devi, B.N. Murthy, "Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light", Catalysis Letters 125 , 320-330 , 2008.

    [18] H.F. Yu, C.W. Wang, "Photocatalysis and characterization of the gel-derived TiO2 and P-TiO2 transparent thin films", Thin Solid Films 519 , 6453-6458, 2011.

    [19] J.H. Hsieh, C. Li, H.C. Liang, "Structures and photocatalytic behavior of tantalum-oxynitride thin films", Thin Solid Films 519 , 4699-4704 , 2011.

    [20] C. Klein, C. S. Hurlbut Jr,黃怡禎譯, “Manual of Mineralogy”,地球科學文教基金會,21版,385-387,2000.

    [21] R.M. Cornell, U. Schwertmann, "The Iron Oxide: Structure, Properties, React-
    ions, Occurrence and Uses", VCH publishers, 1996.

    [22] Y. Xu, S. Yang, G. Zhang, Y. Sun, D. Gao, Y. Sun, "Uniform hematite α- Fe2O3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism", Materials Letters 65 , 1911-1914 , 2011.

    [23] N.K. Devaraj, B.H. Ong, "Effects of calcination on the magnetic properties of iron oxide nanoparticles ", AIP Conference Proceedings 1328, 288-291 , 2011.

    [24] K. Kazuhiko, W. Mai, "Preparation and characterization of pseudocubic hematite particles by utilizing polyethylene amine nonionic surfactants in forced hydrolysis reaction", Colloid and Polymer Science 289 , 981-991 , 2011.

    [25] Z. Zhang, M.F. Hossain, T. Miyazaki, T. Takahashi, "Gas phase photocatalytic activity of ultrathin pt layer coated on α- Fe2O3 films under visible light illumination", Environmental Science and Technology 44 , 4741-4746 , 2010.

    [26] E.M. Rodríguez, G. Fernández, N. Klamerth, M.I.Maldonado,P.M. Álvarez, S. Malato, "Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water", Applied Catalysis B: Environmental 95 , 228-237 , 2010.

    [27] J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, "Hematite solid and hollow spindles: Selective synthesis and application in gas sensor and photocatalysis", Materials Research Bulletin 46 , 1211-1218 , 2011.

    [28] X.L. Fang, C. Chen, M.S. Jin, Q. Kuang, Z.X. Xie, S.Y. Xie, R.B. Huang, L.S. Zheng, "Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment", Journal of Materials Chemistry 19 , 6154-6160 , 2009.

    [29] J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, "Hematite (α- Fe2O3) with various morphologies: Ionic liquid-assisted synthesis, formation mechanism, and properties", ACS Nano 3 , 3749-3761 , 2009.

    [30] X.C. Jiang, A.B. Yu, "Synthesis of Pd/α-Fe2O3 nanocomposites for catalytic CO oxidation ", Journal of Materials Processing Technology 209 , 4558-4562 , 2009.

    [31] G. Garçon, F. Zerimech, M.-H. Hannothiaux, P. Gosset, A. Martin, T. Marez, P. Shirali, "Antioxidant defense disruption by polycyclic aromatic hydrocarbons-coated onto Fe2O3 particles in human lung cells (A549)", Toxicology 166 , 129-137 , 2001.

    [32] K. Sivula, F. Le Formal, M. Grätzel, "Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes ", ChemSusChem 4 , 432-449 , 2011.

    [33] A.V. Kozhevnikov, A.V. Lukoyanov, V.I. Anisimov, M.A. Korotin, "Transition of iron ions from high-spin to low-spin state and pressure-induced insulator-metal transition in hematite Fe2O3", Journal of Experimental and Theoretical Physics 105, 1035-1042 , 2007.

    [34] S. Lafon, I.N. Sokolik, J.L. Rajot, S. Caquincau, A. Gaudichet, " Characterization of iron oxides in mineral dust aerosols: Implications for light absorption ", Journal of Geophysical Research D: Atmospheres 111 , art. no. D21207, 2006.

    [35] T. Fujii, M. Kayano, Y. Takada, M. Nakanishi, J. Takada, "Ilmenite-hematite solid solution films for novel electronic devices", Solid State Ionics 172, 289-292 , 2004.

    [36] J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, "Hematite (α-Fe2O3) with various morphologies: Ionic liquid-assisted synthesis, formation mechanism, and properties", ACS Nano 3 , 3749-3761 , 2009.

    [37] S.M. El-Sheikh, F.A. Harraz, K.S. Abdel-Halim, "Catalytic performance of nano-structured iron oxides synthesized by thermal decomposition technique", Journal of Alloys and Compounds 487, 716-723 , 2009.

    [38] T. Tsuzuki, F. Schäffel, M. Muroi, P.G. McCormick, "α-Fe2O3 nano-platelets prepared by mechanochemical/thermal processing ", Powder Technology 210, 198-202 , 2011.

    [39] A. Kihal, B. Bouzabata, G. Fillion, D. Fruchart, "Magnetic and Structural Properties of Nanocrystalline Iron Oxides", Physics Procedia 2, 665-671 , 2009.

    [40] S. Takayama, K. Kakurai, M. Takeda, A. Matsubara, Y. Nishihara, J.Nishijo, S. Sano, M. Sato, "Investigation of crystal structure formation under microwave heating", Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600 , 246-249 , 2009.

    [41] L. Mota, R. Toledo, R.T. Faria Jr.,E.C. da Silva, H. Vargas, I. Delgadillo- Holtfort, "Thermally treated soil clays as ceramic raw materials: Characterization by X-ray diffraction, photoacoustic spectroscopy and electron spin resonance, " Applied Clay Science 43 , 243-247 , 2009.

    [42] R. Rivera, S. González, A. Stashans, "Microstructure and optical properties of α - Fe2 O3 containing F-centres ", Superlattices and Microstructures 47 , 225-231 , 2010.

    [43] B. Gilbert, C. Frandsen, E.R. Maxey, D.M. Sherman, "Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy", Physical Review B - Condensed Matter and Materials Physics 79 , art. no. 035108 , 2009.

    [44] M. Jarlbring, L. Gunneriusson, B. Hussmann, W. Forsling, "Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions", Journal of Colloid and Interface Science 285 , 212-217 , 2005.

    [45] M.-S. Mo, Z.-H. Ao, H. Wang, Y.-S. Shen, "Structure and humidity-sensitive properties of TiO2-doped α-Fe2O3-K2O nanometer-sized ceramics", Wuji Cailiao Xuebao/Journal of Inorganic Materials 15 , 525-526 , 2000.

    [46] G. Tong, J. Guan, W. Wu, L. Li, Y. Guan, Q. Hua, "Preparation and electrochem-
    ical properties of urchin-like α-Fe2O3 nanomaterials ", Science China Technological Sciences 53 , 1897-1903 , 2010.

    [47] M. Tadić, N. Čitaković, M. Panjan,Z. Stojanović, D. Marković, V. Spasojević, "Synthesis, morphology, microstructure and magnetic properties of hematite submit-
    cron particles", Journal of Alloys and Compounds 509 , 7639-7644 , 2011.

    [48] Z. Liu, Y. Zheng, "Effect of Fe(II) on the formation of iron oxide synthesized from pyrite cinders by hydrothermal process", Powder Technology 209 , 119- 123 , 2011.

    [49] Y. Cudennec, A. Lecerf, "Topotactic transformations of goethite and lepidocrocite into hematite and maghemite", Solid State Sciences 7 , 520-529, 2005.

    [50] G. Tong, J. Guan, W. Wu, L. Li, Y. Guan, Q. Hua, "Preparation and electrochem-
    ical properties of urchin-like α-Fe2O3 nanomaterials ", Science China Technological Sciences 53 , 1897-1903 , 2010.

    [51] M. Ohring, “The Materials Science of Thin Films”, Academic Press, 2002.

    [52] 田民波,”薄膜技術與薄膜材料”,五南,2007,229-254.

    [53] R.W. Berry, P.M. Hall, M.T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, 2001.

    [54] Jz. Xia, Xj. Ni, "Preparation, characteristic and effect of annealing temperature of low voltage ZnO film varistor", 2008 2nd IEEE International Nanoelectronics Conference, INEC 2008 , art. no. 4585626, 891-893, 2008.

    [55] B. Chapman, “Glow discharge processes: sputtering and plasma etching”, New York: John Wiley & Sons, 1980.

    [56] M. Ohring, “Materials science of thin films”, 2nd New York: AcademicPress, 2002.

    [57] J. Fan, Z. Li, C. Gu, Y. Yin, Z. Su, "Calculation method for DC onset corona voltage", Diangong Jishu Xuebao/Transactions of China Electrotechnical Society 23 , 100-105, 2008.

    [58] X.Li, X.-M. Tao, C.-J. Tang, Y.-X. Yin, "Character of atmospheric pressure abnormal glow discharge", Gaodianya Jishu/High Voltage Engineering 34 , 2135-2139 , 2008.

    [59] A. Fruchtman, J.-M. Rax, "Neutral-gas depletion and repletion in plasmas ", Physics of Plasmas 17 , art. no. 043502 , 2010.

    [60] L.D. Tsendin, "Electron kinetics in glows - From Langmuir to the present", Plasma Sources Science and Technology 18 , art. no. 014020 , 2009.

    [61] M. Ohring, “Materials science of thin films”, 2nd New York: AcademicPress, 2002.

    [62] B. Deng, Q. Wei, W. Gao, "Physical properties of Al-doped ZnO films deposited on nonwoven substrates by radio frequence magnetron sputtering", Journal of Coatings Technology Research 5 , 393-397 , 2008.

    [63] 黃春輝,李富友,黃岩誼,“光電功能超薄膜”,曉圓出版社,初版,58-59,2006.

    [64] T. Namikawa, S. Nakagawa, K. Kaneta, N. Matsushita, M. Naoe, " Magnetic characteristics of (La,Sr)MnO3 films deposited by facing target sputtering system ", Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy 47 , 175-178 , 2000.

    [65] T. Kamatani, H. Akai "The magnetic properties in transition metal-doped chalcopyrite semiconductors", Materials Science in Semiconductor Processing, Volume 6, Issues 5-6, 389-391, 2003.

    [66] 高濂,鄭珊,張青紅, ”奈米光觸媒”, 五南圖書出版公司, 2004.

    [67] Y.Q. Peng, S. Sun, C.A. Song, "Generalization of Einstein relation for organic semiconductor thin films", Materials Science in Semiconductor Processing, Volume 8, Issue 4, 525-530, 2005.

    [68] A.P. Lee, B.J. Reedy, "Temperature modulation in semiconductor gas sensing", Sensors and Actuators B: Chemical, Volume 60, Issue 1, 35-42, 1999.

    [69] G.A. Niklasson, L. Berggren, A.L. Larsson, "Electrochromic tungsten oxide: The role of defects", Solar Energy Materials and Solar Cells 84 , 315-328 , 2004.

    [70] R.E. Burgess, "The statistics of charge carrier fluctuations in semiconductors", Proceedings of the Physical Society. Section B 69 , art. no. 308, 1020-1027 , 1956.

    [71] N. Jordan, N. Marmier, C. Lomenech, E. Giffaut, J.J. Ehrhardt, "Sorption of silicates on goethite, hematite, and magnetite: Experiments and modelling", Electrochemical and Solid-State Letters 10 , D95-D99 , 2007.

    [72] Y. Takada, M. Nakanishi, T. Fujii, J. Takada, "Preparation and characterization of ilmenite-hematite thin films", Journal of Magnetism and Magnetic Materials 310, 2108-2110 , 2007.

    [73] N. Beermann, L. Vayssieres, S.-E. Lindquist, A. Hagfeldt, "Photoelectrochemical studies of oriented nanorod thin films of hematite", Journal of the Electrochemical Society 147 , 2456-2461 , 2000.

    [74] V.P. Della, J.A. Junkes, O.R.K. Montedo, A.P.N. Oliveira, C.R. Rambo, D. Hotza, "Synthesis of hematite from steel scrap to produce ceramic pigments", American Ceramic Society Bulletin 86 , 9101-9108 , 2007.

    [75] K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, "Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light", Journal of Physical Chemistry C 113 , 4940-494, 2009.

    [76] S.A. Chambers, T. Ohsawa, C.M. Wang, I. Lyubinetsky, J.E. Jaffe, "Band offsets at the epitaxial anatase TiO2/n-SrTiO3(0 0 1) interface", Surface Science 603, 771-780, 2009.

    [77] L. Jing, X. Li, S. Li, B. Wang, B. Xin, H. Fu, D. Wang, W. Cai, "XPS and SPS studies on nanometer Au/TiO2 photocatalyst", MChinese Journal of Catalysis 26, 189-193 , 2005.

    [78] D. Lawless, N. Serpone, D. Meisel, "Synthesis and characterization of transition element substituted titanate nanotubes", Journal of Physical Chemistry 95, 5166 -5170 , 1999.

    [79] X.C. Song, Y.F. Zheng, H.Y. Yin, G..S. Cao, "Synthesis and characterization of transition element substituted titanate nanotubes", Acta Physico - Chimica Sinica 21 , 1076-1080 , 2005.

    [80] T. Skata, “fundamentals and applications” , John Wiley & Sons, New York, 311, 1989 .

    [81] M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, "Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts", Journal of Electroanalytical Chemistry 396 , 21-26 , 1995.

    [82] D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjinés, F. Lévy, V.I. Pârvulescu, "Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering", Applied Catalysis B: Environmental 25, 83-92 , 2000.

    [83] C.H. Lin, C.H. Lee, J.-H. Chao, C.Y. Kuo, Y.C. Cheng, W.N. Huang, H.W. Chang, M.K. Shih, "Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts ", Catalysis Letters 98, 61-66 , 2004.

    [84] A. Kudo, H. Nagayoshi, "Photocatalytic reduction of N2O on metal-supported TiO2 powder at room temperature in the presence of H2O and CH3OH vapor", Catalysis Letters 52, 109-111 , 1998.

    [85] Z. Sun, Y. Yang, Y. Chen, "Photocatalytic degradation of polyvinyl alcohol in UV TiO2-H2O system", Taiyangneng Xuebao/Acta Energiae Solaris Sinica 25, 760-763 , 2004.

    [86] A.P. Davis, C.P. Huang, "The photocatalytic oxidation of sulfur-containing orga-
    nic compounds using cadmium sulfide and the effect on CdS photocorrosion", Water Research 25, 1273-1278 , 1991.

    [87] A.L. Linsebigler, G. Lu, J. Yates “Photocatalysis on TiO2 surfaces: Princip-
    les, mechanisms, and selected results”, Chemical Reviews 95, 735-758, 1995.

    [88] M.A. Fox, H. Pan, "Synthesis and properties of 2,3,6,7-tetrakis(alkoxymethyl)
    tetrathialfulvalenes", Journal of Organic Chemistry 59, 6519-6527 , 1994.

    [89] J.M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants.”, Catalysis Today, 53, 115-129, 1999.

    [90] 黃春輝,李富友,黃岩誼,“光電功能超薄膜”,曉圓出版社,初版,340-341,2006.

    [91] J. Ye, Z. Zou, M. Oshikiri, A. Matsushita, M.Imai, T. Shishido, “A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation”, Chemical Physic Letters, 356, 221-226 , 2002.

    [92] A. Kudo, H Kato, I. Tsuji, “Strategies for the development of visible-light-driven photocatalyst for water splitting”, Chemistry Letters, 33, 1534-1539, 2004.

    [93] T. Sakata, K. Hashimoto, T. Kawai, “Catalystic properties of ruthenium oxide on n-type semiconductors under illumination”, Journal of physical chemistry, 88, 5214, 1984.

    [94] M. Taquikhan, R. C. Bhardwaj, C. Bhardwaj. “Photodecomposition of H2S by silver doped cadmium sulfide and mixed sulfides with ZnS”, Internationial Jounal of Hydrogen Energy, 13, 7 , 1988.

    [95] M. Ashokkumar, “An overview on semiconductor particulate systems for photo-production of hydrogen”, International Journal of Hydrogen Engrgy, 23, 427-438, 1998.

    [96] H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalite photocatalysts”, Catalysis Today, 78 561-569 ,2003.

    [97] K. Široký, J. Jirešová, L. Hudec, "Iron oxide thin film gas sensor", Thin Solid Films 245 (1-2), 211-214 , 1994.

    [98] E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, "Low-temperature reactively sputtered iron oxide for thin film devices ", Thin Solid Films 466, 307-313 , 2004.

    [99] L. Truffault, B. Choquenet, K. Konstantinov, T. Devers, C. Couteau, L.J. Coiffard, "Synthesis of nano-hematite for possible use in sunscreens", Journal of nanoscience and nanotechnology 11,2413-2420 , 2011.

    [100] 李琦峰,"超順磁性奈米粒子的表面電荷於DNA分離上的應用與α-Fe2O3奈米粒子之製備",國立成功大學化學研究所碩士論文,2005.

    [101] M. Tadić, N. Čitaković, M. Panjan, Z. Stojanović, D. Marković, V. Spasojević, "Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles", Journal of Alloys and Compounds 509 , 7639-7644 , 2011.

    [102] M. Sorescu, L. Diamandescu, A. Tomescu, S. Krupa, "Synthesis and sensing properties of zirconium-doped hematite nanoparticles ", Physica B: Condensed Matter, Volume 404, Issue 16, Pages 2159-2165, 2009.

    [103] Y. Li, M. Ma, W. Chen, L. Li, M. Zen, "Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations", Materials Chemistry and Physics 129 , pp. 501-505 , 2011.

    [104] M. Novotný, J. Matoušek, "Diffusion at the interface between Ag doped SiO2 layers and the glass substrate", Ceramics - Silikaty 55 , 64-67 , 2011.

    [105] L. Truffault, B. Choquenet, K. Konstantinov, T. Devers, C. Couteau, L.J. Coiffard, "Synthesis of nano-hematite for possible use in sunscreens", Journal of nanoscience and nanotechnology 11 (3),2413-2420 , 2011.

    [106] M.K. Seery, R. George, P. Floris, S.C. Pillai, "Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis", Journal of Photochemistry and Photobiology A: Chemistry 189 (2-3), 258-263 , 2007.

    [107] Y. Wang, W. Du, Y. Xu, "Effect of Sintering Temperature on the Photocatalytic Activities and Stabilities of Hematite and Silica-Dispersed Hematite Particles for Organic Degradation in Aqueous Suspensions", Langmuir , 25, 2895-2899, 2009.

    [108] F. Feng, X. Hu, P. L. Yue, "Discoloration and Mineralization of Orange II Using Different Heterogeneous Catalysts Containing Fe: A Comparative Study", Environ. Sci. Technol., 38, 5773-5778, 2004.

    [109] Y. S. Hu, A. Kleiman-Shwarsctein,A. J. Forman,D. Hazen, J.N. Park, E. W. McFarland, "Pt-Doped r-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting", Chem. Mater. , 20, 3803-3805, 2008.

    [110] J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, "Hematite solid and hollow spindles: Selective synthesis and application in gas sensor and photocatalysis", Materials Research Bulletin 46 , 1211-1218 ,2011.

    [111] P. Kumara, P. harmaa, R. Shrivastavb, S. Dassb, V. R. Satsangi, "Electro-deposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting", International Journal of Hydrogen Energy, Volume 36, Issue 4, 2777-2784 , 2011.

    [112] S.S. Shinde, R.A. Bansode, C.H. Bhosale, K.Y. Rajpure, "Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells", Journal of Semiconductors, Volume 32, Issue 1, , Article number 013001 , 2011.

    [113] S. Qiua, S. Xua, F. Ma, J. Yanga, "The photocatalytic efficiency of the metal doped TiO2 with ceramic foam as catalyst carriers ", Powder Technology, Volume 210, Issue 2, 83-86 , 2011.

    [114] Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, "Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition", Journal of Physical Chemistry C, Volume 115, Issue 19, 9498-9502, 2011.

    [115] J. Liu, Y. Sun, Z. Li, S. Li, J. hao, "Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag-SrTiO3 nanotube arrays", International Journal of Hydrogen Energy, 36, Issue 10, 5811-5816, 2011.

    下載圖示 校內:2014-09-13公開
    校外:2014-09-13公開
    QR CODE