簡易檢索 / 詳目顯示

研究生: 林逢嘉
Lin, Forn-Chia
論文名稱: 上消化道癌症中 RUNX3 及 Pin1 對 β-catenin/cyclin D1 的調控
RUNX3 And Pin1 Regulate β-catenin/cyclin D1 in Cancers of Upper Digestive Tract
指導教授: 許博翔
Sheu, Bor-Shyang
呂佩融
Lu, Pei-Jung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 100
中文關鍵詞: RUNX3Pin1Akt1β-catenincyclin D1胃癌食道鱗狀細胞癌
外文關鍵詞: RUNX3, Pin1, Akt1, β-catenin, cyclin D1, gastric cancer, esophageal squamous cell carcinoma
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是重要的人類健康問題,胃癌及食道鱗狀細胞癌是常見且致命的疾病。雖然整合運用了各種的治療方式,多數病人依然死於疾病或治療引起的副作用,為了改善現有的及發展新穎的診斷與治療癌症的方式,癌症致病機轉必須更清楚地被研究。
    RUNX3是癌症抑制基因,它的抑癌作用最早是在胃癌中被確認,在大約八成的胃癌中RUNX3會有低表現或失去功用的情形。雖然RUNX3已知會透過調控許多分子的表現或作用而抑制胃癌的生成,但是其機轉仍未被透徹地瞭解。所以我的博士論文研究胃癌中RUNX3對β-catenin/ cyclin D1的調控,RUNX3被發現會抑制Akt1的轉錄並降低Akt1的表現量,進而促使β-catenin被分解及cyclin D1的低表現,結果顯示在胃癌中RUNX3的失去功能會促使癌化的進行,其機轉包括Akt1/ β-catenin/ cyclin D1訊息途徑的活化。
    β-catenin與cyclin D1也都是Pin1基質,而Pin1已被證實會藉由調控許多抑癌或致癌分子而促使癌症的生成。所以我的博士論文研究食道鱗狀細胞癌中RUNX3對β-catenin與cyclin D1的調控,以細胞株的實驗證明了將Pin1的表現量降低會抑制 β-catenin與cyclin D1的表現量及食道鱗狀細胞癌的生成,也確認在接受手術治療的食道鱗狀細胞癌病患中,Pin1的高表現量與不良預後有相關性,上述結果顯示Pin1會透過β-catenin與cyclin D1而增進食道鱗狀細胞癌惡性度。
    綜言之,β-catenin與cyclin D1在胃癌中會被RUNX3抑制,而在食道鱗狀細胞癌中會被Pin1正相關地調控,我的博士論文讓上消化道癌症的致病機轉更清楚地被了解,期望對未來癌症診療業務的改進與發展有所助益。

    Cancer is one of major health issues. Gastric cancer and esophageal squamous cell carcinoma (ESCC) are common and fatal malignancy. Despite multi-modality therapies, most patients eventually die from the disease or treatment-related complications. More comprehensive investigations of carcinogenesis and tumor progression are necessary for developing novel diagnostic and therapeutic strategies for these cancers.
    RUNX3 is recognized as a tumor suppressor. The tumor suppressive functions of RUNX3 were first reported in gastric epithelial cells. RUNX3 was inactivated by gene silencing or protein mislocalization in more than 80% of gastric cancers. Although restoration of RUNX3 in gastric cancer cells could inhibit tumorigenesis through regulating several target genes, the mechanisms were not clearly understood. The role of RUNX3 in regulating β-catenin and cyclin D1 in gastric cancer was studied in my thesis. RUNX3 repressed Akt1 expression through transcriptional inhibition. Two RUNX3-binding sites on Akt1 promoter were identified. The inhibition of Akt1 facilitated β-catenin degradation followed by cyclin D1 downregulation. The data suggested loss of RUNX3 in gastric cancer promoted tumorigenesis through Akt1/β-catenin/cyclin D1 signaling pathway.
    β-catenin and cyclin D1 are well known substrates of Pin1 which is a peptidyl-prolyl isomerase and promotes oncogenesis by regulating multiple oncogenic signaling at various levels. Pin1/β-catenin/cyclin D1 signaling pathway in ESCC was investigated. The experimental evidences were provided that Pin1 knockdown inhibited expression of β-catenin/cyclin D1 and tumorigenesis of ESCC cells. The inhibited tumorigenesis in cells with Pin1 knockdown was partially recovered by cyclin D1 restoration. In addition, high Pin1 expression was correlated with poor prognosis of ESCC patients. The results supported that Pin1 may promote ESCC aggressiveness through β-catenin and cyclin D.
    In summary, β-catenin and cyclin D1 are repressed by tumor suppressor RUNX3 but positively regulated by Pin1 in cancers of upper digestive tract. The results of my thesis can help people understand carcinogenic mechanisms and provide rationales for developing novel target therapy of cancer in the future.

    TABLE OF CONTENTS Abstract in Chinese II Abstract in English III-IV Acknowledgement V Table of Contents VI-VIII Table Contents IX Figure Contents X-XII Chapter One: Introduction 1 1.1 Cancer 2 1.2 Gastric cancer 2 1.3 Esophageal squamous cell carcinoma 3 1.4 β-catenin 4 1.5 Cyclin D1 4 1.6 RUNX3 5 1.7 Protein interacting with NIMA (never in mitosis A)-1 (Pin1) 6 1.8 The goal and specific aims 8 Chapter Two: Materials and Methods 9 2.1 Cell lines and cell culture 10 2.2 Patients and clinical specimens 10 2.3 Generation of recombinant plasmids 10 2.4 Gene transfection 11 2.5 Western blot analysis 11 2.6 RNA extraction and reverse transcription-polymerase chain reaction 12 2.7 Cell proliferation assay 13 2.8 Colony formation assay 13 2.9 Xenograft tumor growth 13 2.10 Luciferase reporter assay 13 2.11 Immunohistochemistry analysis 14 2.12 Flow cytometry analysis 15 2.13 Human phospho-kinase array 15 2.14 Quantitative real-time polymerase chain reaction 15 2.15 Chromatin immunoprecipitation assay 16 2.16 Immunofluorescence studies 17 2.17 Degradation assay 17 2.18 Statistical analysis 17 Chapter Three: Results 19 3.1 Loss of RUNX3 activates the Akt1/bcatenin/cyclin D1 signaling pathway that promotes tumorigenesis in gastric cancer 20 3.1.1 Restoration of RUNX3 caused cell cycle arrest and inhibited cell proliferation 20 3.1.2 RUNX3 directly repressed Akt1 transcription 21 3.1.3 RUNX3 attenuated the Akt1/-catenin/cyclin D1 signaling pathway 23 3.1.4 RUNX3 reduced -catenin nuclear localization, transactivation and protein stability 24 3.1.5 Restoration of cyclin D1 reversed RUNX3-mediated cell growth inhibition and cell cycle arrest 26 3.2 Pin1 positively affects tumorigenesis of esophageal squamous cell carcinoma and correlates with poor survival of patients 27 3.2.1 Pin1 knockdown inhibites proliferation, clonogenicity and tumorigenesis of ESCC 27 3.2.2 Pin1 upregulation was identified in clinical ESCC specimens and correlated with poor prognosis of patients 27 3.2.3 β-catenin and cyclin D1 were positively regulated by Pin1 28 Chapter Four: Discussion and Conclusion 30 Chapter Five: Tables and Figures 42 Chapter Six: References 87 Theses-related Publications 97 Curriculum Vitae 98

    Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG: Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol. 2004; 164: 1727-37.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999; 96: 857-68.
    Bureau of Health Promotion, Department of Health and Welfare, R.O.C. (Taiwan). Cancer registry annual report, 2011. 2014.
    Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, Yeoh KG, Fukamachi H, Ito Y: Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology. 2010; 138: 255-65.
    Chuang LS, Ito Y: RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene. 2010; 29: 2605-15.
    Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM, Pavlova N, Rubin MA, Yelick PC, Freeman MR: The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J. 2007; 26: 4523-34.
    Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, Groden J, Lowy AM: beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002; 62: 3503-6.
    Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 2006; 127: 469-80.
    Czito BG, Denittis AS, Willett CG: Esophageal cancer. In Perez CA and Brady LW. eds. Principles and Practice of Radiation Oncology. 5th ed. Philadelphia: Lippincott Co. 1131-1153, 2008.
    Dihlmann S, Kloor M, Fallsehr C, von Knebel Doeberitz M: Regulation of AKT1 expression by beta-catenin/Tcf/Lef signaling in colorectal cancer cells. Carcinogenesis. 2005; 26: 1503-12.
    Du K, Tsichlis PN: Regulation of the Akt kinase by interacting proteins. Oncogene. 2005; 24: 7401-9.
    Durst KL, Hiebert SW: Role of RUNX family members in transcriptional repression and gene silencing. Oncogene. 2004; 23: 4220-4.
    Ebert MP, Fei G, Kahmann S, Müller O, Yu J, Sung JJ, Malfertheiner P: Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis. 2002; 23: 87-91.
    Fenoglio-Preiser CM, Noffsinger AE, Belli J, Stemmermann GN: Pathologic and phenotypic features of gastric cancer. Semin Oncol. 1996; 23: 292-306.
    Fischer G, Aumuller T: Regulation of peptide bond cis/transisomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol. 2003; 148: 105–50.
    Fujii S, Ito K, Ito Y, Ochiai A: Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008; 283: 17324–32.
    Fukuchi M, Fukai Y, Kimura H, Sohda M, Miyazaki T, Nakajima M, Masuda N, Tsukada K, Kato H, Kuwano H: Prolyl isomerase Pin1 expression predicts prognosis in patients with esophageal squamous cell carcinoma and correlates with cyclin D1 expression. Int J Oncol. 2006; 29: 329-34.
    Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, Zhang F, Zhao ZR, Li ZT, Liu ZY, Zhao YD, Sun J, Zhou CC, Yao R, Wang SY, Wang P, Sun N, Zhang BH, Dong JS, Yu Y, Luo M, Feng XL, Shi SS, Zhou F, Tan FW, Qiu B, Li N, Shao K, Zhang LJ, Zhang LJ, Xue Q, Gao SG, He J: Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014 doi: 10.1038/ng.3076. [Epub ahead of print]
    Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J; Australasian Gastro-Intestinal Trials Group: Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol. 2007; 8: 226-34.
    Gunderson LL, Sosin H: Adenocarcinoma of the stomach: areas of failure in a re-operation series (second or symptomatic look) clinicopathologic correlation and implications for adjuvant therapy. Int J Radiat Oncol Biol Phys. 1982; 8: 1-11.
    Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011; 144: 646-74.
    Hong L, Han Y, Zhang H, Li M, Gong T, Sun L, Wu K, Zhao Q, Fan D: The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg. 2010; 251: 1056-63.
    Hsu PI, Hsieh HL, Lee J, Lin LF, Chen HC, Lu PJ, Hsiao M: Loss of RUNX3 expression correlates with differentiation, nodal metastasis, and poor prognosis of gastric cancer. Ann Surg Oncol. 2009; 16: 1686-94.
    Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, Lee CW, Voon DC, Koo JK, Wang H, Fukamachi H, Ito Y: RUNX3 attenuates β-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 2008; 14: 226-37.
    Ito Y: RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res. 2008; 99: 33-76.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011; 61: 69-90.
    Jin H, Jiang J, Sun L, Zheng F, Wu C, Peng L, Zhao Y, Wu X: The prolyl isomerase Pin1 is overexpressed in human esophageal cancer. Oncol Lett. 2011; 2: 1191-6.
    Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC: Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem. 2004; 279: 29409-17.
    Kahn M: Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014; 13: 513-32.
    Kamangar F, Chow WH, Abnet CC, Dawsey SM: Environmental causes of esophageal cancer. Gastroenterol Clin North Am. 2009; 38: 27-57.
    Kim JH, Choi JK, Cinghu S, Jang JW, Lee YS, Li YH, Goh YM, Chi XZ, Lee KS, Wee H, Bae SC: Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. J Cell Biochem. 2009; 107: 557-65.
    Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H: Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 2003; 17: 1979-91.
    Kordes S, van Berge Henegouwen MI, Hulshof MC, Bergman JJ, van der Vliet HJ, Kapiteijn E, van Laarhoven HW, Richel DJ, Klinkenbijl JH, Meijer SL, Wilmink JW: Preoperative Chemoradiation Therapy in Combination With Panitumumab for Patients With Resectable Esophageal Cancer: The PACT Study. Int J Radiat Oncol Biol Phys. 2014; 90: 190-6.
    Lee KH, Lin FC, Hsu TI, Lin JT, Guo JH, Tsai CH, Lee YC, Lee YC, Chen CL, Hsiao M, Lu PJ: MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim Biophys Acta. 2014; 1843: 2055-66.
    Lee SH, Kim J, Kim WH, Lee YM: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 2009; 28: 184–94.
    Li QL, Ito K, Sakakura C, Fukamachi H, Inoue Ki, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y: Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002; 109: 113-24.
    Li T, Lu YY, Zhao XD, Guo HQ, Liu CH, Li H, Zhou L, Han YN, Wu KC, Nie YZ, Shi YQ, Fan DM: MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1. Oncogene. 2014; 33: 783-93.
    Li VS, Wong CW, Chan TL, Chan AS, Zhao W, Chu KM, So S, Chen X, Yuen ST, Leung SY: Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer. 2005; 5: 29.
    Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F, Uchida T, Hunter T, Lu KP: Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 2002; 99: 1335-40.
    Liou YC, Zhou XZ, Lu KP: Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci. 2011; 36: 501-14.
    Lu KP, Zhou XZ: The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007; 8: 904-16.
    Lu PJ, Zhou XZ, Shen M, Lu KP: Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999; 283: 1325-8.
    Maira SM, Galetic I, Brazil DP, Kaech S, Ingley E, Thelen M, Hemmings BA: Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science. 2001; 294: 374-80.
    Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009; 9: 153-66.
    Misra UK, Pizzo SV: Upregulation of AKT1 protein expression in forskolin- stimulated macrophage: evidence from ChIP analysis that CREB binds to and activates the AKT1 promoter. J Cell Biochem. 2007; 100: 1022-33.
    McLean MH, El-Omar EM: Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol. 2014 Aug 19. doi: 10.1038/nrgastro.2014.143. [Epub ahead of print]
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL: Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011; 11: 558-72.
    National Comprehensive Cancer Network. Gastric cancer: NCCN Clinical Practice Guidelines in Oncology. Version 2. 2013.
    Nicole Tsang YH, Wu XW, Lim JS, Wee Ong C, Salto-Tellez M, Ito K, Ito Y, Chen LF: Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer. Oncogene. 2013; 32: 1488-96.
    Ogawa S, Satake M, Ikuta K. Physical and functional interactions between STAT5 and Runx transcription factors. J Biochem. 2008; 143: 695-709.
    Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, Maehara Y: Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer. 2005; 117: 376-80.
    Ono H, Sakoda H, Fujishiro M, Anai M, Kushiyama A, Fukushima Y, Katagiri H, Ogihara T, Oka Y, Kamata H, Horike N, Uchijima Y, Kurihara H, Asano T: Carboxy-terminal modulator protein induces Akt phosphorylation and activation, thereby enhancing antiapoptotic, glycogen synthetic, and glucose uptake pathways. Am J Physiol Cell Physiol. 2007; 293: C1576-1585.
    Osaki M, Oshimura M, Ito H: PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004; 9: 667-76.
    Park S, Kim D, Kaneko S, Szewczyk KM, Nicosia SV, Yu H, Jove R, Cheng JQ: Molecular cloning and characterization of the human AKT1 promoter uncovers its up-regulation by the Src/Stat3 pathway. J Biol Chem. 2005; 280: 38932–41.
    Pestell RG: New roles of cyclin D1. Am J Pathol. 2013; 1831: 3-9.
    Pradeep A, Sharma C, Sathyanarayana P, Albanese C, Fleming JV, Wang TC, Wolfe MM, Baker KM, Pestell RG, Rana B: Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric cancer cells. Oncogene. 2004; 23: 3689-99.
    Remy I, Montmarquette A, Michnick SW: PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol. 2004; 6: 358-65.
    Ryo A, Nakamura N, Wulf G, Liou YC, Lu KP: Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat Cell Biol. 2001; 3: 793–801.
    Sakakura C, Miyagawa K, Fukuda KI, Nakashima S, Yoshikawa T, Kin S, Nakase Y, Ida H, Yazumi S, Yamagishi H, Okanoue T, Chiba T, Ito K, Hagiwara A, Ito Y: Frequent silencing of RUNX3 in esophageal squamous cell carcinomas is associated with radioresistance and poor prognosis. Oncogene 2007; 26: 5927–38.
    Samatar AA, Wang L, Mirza A, Koseoglu S, Liu S, Kumar CC: Transforming growth factor-beta 2 is a transcriptional target for Akt/protein kinase B via forkhead transcription factor. J Biol Chem. 2002; 277: 28118-26.
    Savi F, Forno I, Faversani A, Luciani A, Caldiera S, Gatti S, Foa P, Ricca D, Bulfamante G, Vaira V, Bosari S: miR-296/Scribble axis is deregulated in human breast cancer and miR-296 restoration reduces tumour growth in vivo. Clin Sci (Lond). 2014; 127: 233-42.
    Sherr CJ, Roberts JM: Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004; 18: 2699–711.
    Sjoquist KM, Burmeister BH, Smithers BM, Zalcberg JR, Simes RJ, Barbour A, Gebski V; Australasian Gastro-Intestinal Trials Group: Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011; 12: 681-92.
    Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, Hung MC, Bresalier RS: Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res. 2009; 69: 1343–9.
    Soung YH, Lee JW, Nam SW, Lee JY, Yoo NJ, Lee SH: Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas. Oncology. 2006; 70: 285-9.
    Spigel DR, Greco FA, Meluch AA, Lane CM, Farley C, Gray JR, Clark BL, Burris HA 3rd, Hainsworth JD: Phase I/II trial of preoperative oxaliplatin, docetaxel, and capecitabine with concurrent radiation therapy in localized carcinoma of the esophagus or gastroesophageal junction. J Clin Oncol. 2010; 28: 2213-9.
    Stock M, Otto F: Gene deregulation in gastric cancer. Gene. 2005; 360: 1-19.
    Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K, Salto-Tellez M: Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta. 2009; 1796: 315-31.
    Tonomoto Y, Tachibana M, Dhar DK, Onoda T, Hata K, Ohnuma H, Tanaka T, Nagasue N: Differential expression of RUNX genes in human esophageal squamous cell carcinoma: downregulation of RUNX3 worsens patient prognosis. Oncology. 2007; 73: 436-56.
    van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hospers GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, ten Kate FJ, Creemers GJ, Punt CJ, Plukker JT, Verheul HM, Spillenaar Bilgen EJ, van Dekken H, van der Sangen MJ, Rozema T, Biermann K, Beukema JC, Piet AH, van Rij CM, Reinders JG, Tilanus HW, van der Gaast A; CROSS Group: Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012; 366: 2074-84.
    Wei D, Gong W, Oh SC, Li Q, Kim WD, Wang L, Le X, Yao J, Wu TT, Huang S, Xie K: Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res. 2005; 65: 4809-16.
    Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM: miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008; 14: 382-93.
    Xing X, Wang J, Xing LX, Li YH, Yan X, Zhang XH: Involvement of MAPK and PI3K signaling pathway in sterigmatocystin-induced G2 phase arrest in human gastric epithelium cells. Mol Nutr Food Res. 2011; 55: 749–60.
    Xu XC: Risk factors and gene expression in esophageal cancer. Methods Mol Biol. 2009; 471: 335-60.
    Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y: RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem. 2006; 281: 5267-76.
    Yeh ES, Means AR: PIN1, the cell cycle and cancer. Nat Rev Cancer. 2007; 7: 381-8.
    Ziros PG, Georgakopoulos T, Habeos I, Basdra EK, Papavassiliou AG: Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3beta. J Bone Miner Res. 2004; 19: 1892-904.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE