簡易檢索 / 詳目顯示

研究生: 黎明心
Le, Minh Tam
論文名稱: 氨氣/空氣火焰與傾斜甲烷/空氣火焰交互作用之火焰行為與排放特性研究
A Study on Flame Behaviors and Emissions of Ammonia/Air Flames Interacting with Inclined Methane/Air Flames
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 93
中文關鍵詞: 氨氣燃燒雙火焰當量比控制氮氧化物排放一氧化碳排放
外文關鍵詞: Ammonia combustion, Dual flames, Equivalence ratio control, NOx emissions, CO emissions
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract i 摘要 iii Contents v List of Figures vii List of Table ix Nomenclature x Chapter 1. Introduction 1 1.1 Background 1 1.2 Ammonia as An Effective Hydrogen Carrier 2 1.3 Challenges of Ammonia Combustion 6 1.3.1 Low Flammability 6 1.3.2 High NOx Emissions 7 1.4 Ammonia Combustion Enhancement Methods 10 1.4.1 Current Research Directions 10 1.4.2 Ammonia/Methane-Blended Combustion 14 1.5 Ammonia/ Methane Dual-Flame Strategy 17 1.6 Triple-Slot Burner with Inclined Side Jets for Dual-Flame Analysis 23 1.6.1 Triple-Slot Burner 23 1.6.2 Triple-Slot Burner with Inclined Side Jets 26 1.7 Motivation and Objectives 29 1.8 Methodology 31 Chapter 2. Experimental Setup and Apparatus 33 2.1 Burner Arrangement 33 2.2 Testing Conditions 34 2.3 Flame Imaging & Emissions Measurement Setup 37 2.4 PIV Setup 39 Chapter 3. Results & Discussion 47 3.1 Flame Appearance 47 3.2 Flow Field Analysis 51 3.3 Flame Chemiluminescence 54 3.4 Emissions Characteristics 58 Chapter 4. Conclusion 67 Chapter 5. Future Works 71 Reference 73

    [1] A. H. Hideaki Kobayashi, K.D. Kunkuma A. Somarathne, Ekenechukwu C. Okafor, "Science and technology of ammonia combustion," Proceedings of the Combustion Institute, vol. 37, no. 1, pp. 109-133, 2019, doi: https://doi.org/10.1016/j.proci.2018.09.029.
    [2] U. S. E. P. Agency. "Global Greenhouse Gas Emissions Data." (accessed 20/03/2025.
    [3] I. P. o. C. C. (IPCC), "Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change," Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2021. Accessed: 28/04/2025. [Online]. Available: https://www.ipcc.ch/report/ar6/wg1/
    [4] I. E. Agency, "CO₂ Emissions in 2022," International Energy Agency, Paris, France, 2023. [Online]. Available: https://www.iea.org/reports/co2-emissions-in-2022
    [5] W. H. O. (WHO), "Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease," World Health Organization, Geneva, Switzerland, 2016. Accessed: 28/04/2025. [Online]. Available: https://www.who.int/publications/i/item/9789241511353
    [6] IPCC, "Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change," Cambridge, United Kingdom and New York, NY, USA, Report 2014. [Online]. Available: https://www.ipcc.ch/report/ar5/wg3/
    [7] M. R. Usman, "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, vol. 167, 112743, 2022, doi: https://doi.org/10.1016/j.rser.2022.112743.
    [8] I. D. Ghassan Chehade, "Progress in green ammonia production as potential carbon-free fuel," Fuel, vol. 299, 120845, 2021, doi: https://doi.org/10.1016/j.fuel.2021.120845.
    [9] N. I. o. S. a. T. (NIST). "NIST Chemistry WebBook: Fluid Properties." https://webbook.nist.gov/chemistry/fluid/ (accessed 26/02/2025.
    [10] K. R. Korawich Trangwachirachai, Leon Lefferts, Jimmy A. Faria Albanese, "Recent progress on ammonia cracking technologies for scalable hydrogen production," Current Opinion in Green and Sustainable Chemistry, vol. 49, 100945, 2024, doi: https://doi.org/10.1016/j.cogsc.2024.100945.
    [11] A. R. S. Simon Richard, Pierre Olivier, Fausto Gallucci, "Techno-economic analysis of ammonia cracking for large scale power generation," International Journal of Hydrogen Energy, vol. 71, pp. 571-587, 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.05.308.
    [12] J. A. Miller, Smooke, M. D., Green, R. M., & Kee, R. J. , "Kinetic Modeling of the Oxidation of Ammonia in Flames," Combustion Science and Technology, vol. 34(1–6), pp. 149–176, 1983, doi: https://doi.org/10.1080/00102208308923691.
    [13] C. Duynslaegher, H. Jeanmart, and J. Vandooren, "Ammonia combustion at elevated pressure and temperature conditions," Fuel, vol. 89, no. 11, pp. 3540-3545, 2010, doi: https://doi.org/10.1016/j.fuel.2010.06.008.
    [14] S. Choi, S. Lee, and O. C. Kwon, "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, vol. 85, pp. 503-510, 2015, doi: https://doi.org/10.1016/j.energy.2015.03.061.
    [15] A. Karan, G. Dayma, C. Chauveau, and F. Halter, "Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures," Combustion and Flame, vol. 236, p. 111819, 2022, doi: https://doi.org/10.1016/j.combustflame.2021.111819.
    [16] T. G. Akihiro Hayakawa, Rentaro Mimoto, Taku Kudo, Hideaki Kobayashi, "NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures," Mechanical Engineering Journal, vol. 2, no. 1, pp. 14-00402, 2015, doi: https://doi.org/10.1299/mej.14-00402.
    [17] Y. B. Wai Siong Chai, Pengfei Jin, Guang Tang, Lei Zhou, "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, vol. 147, 111254, 2021, doi: https://doi.org/10.1016/j.rser.2021.111254.
    [18] J. Li, H. Huang, N. Kobayashi, Z. He, Y. Osaka, and T. Zeng, "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, vol. 93, pp. 2053-2068, 2015, doi: https://doi.org/10.1016/j.energy.2015.10.060.
    [19] D. Wang, C. Ji, S. Wang, Z. Wang, J. Yang, and Q. Zhao, "Numerical study on the premixed oxygen-enriched ammonia combustion," Energy & Fuels, vol. 34, no. 12, pp. 16903-16917, 2020, doi: https://doi.org/10.1021/acs.energyfuels.0c02777.
    [20] J. Li, Y. Wang, J. Shi, and X. Liu, "Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium," Fuel, vol. 145, pp. 70-78, 2015, doi: https://doi.org/10.1016/j.fuel.2014.12.070.
    [21] S.-S. Su, S.-J. Hwang, and W.-H. Lai, "On a porous medium combustor for hydrogen flame stabilization and operation," International journal of hydrogen energy, vol. 39, no. 36, pp. 21307-21316, 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.10.059.
    [22] S. Ni and D. Zhao, "NOx emission reduction in ammonia-powered micro-combustors by partially inserting porous medium under fuel-rich condition," Chemical Engineering Journal, vol. 434, p. 134680, 2022, doi: https://doi.org/10.1016/j.cej.2022.134680.
    [23] Q. Lin et al., "Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma," Fuel, vol. 319, p. 123818, 2022, doi: https://doi.org/10.1016/j.fuel.2022.123818.
    [24] G. T. Kim, J. Park, S. H. Chung, and C. S. Yoo, "Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor," Fuel, vol. 323, p. 124227, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124227.
    [25] S. Hinokuma and K. Sato, "Ammonia combustion catalysts," Chemistry Letters, vol. 50, no. 4, pp. 752-759, 2021, doi: https://doi.org/10.1246/cl.200843.
    [26] F. Normann, A. O. Wismer, C. R. Müller, and H. Leion, "Oxidation of ammonia by iron, manganese and nickel oxides–Implications on NOx formation in chemical-looping combustion," Fuel, vol. 240, pp. 57-63, 2019, doi: https://doi.org/10.1016/j.fuel.2018.11.121.
    [27] J. Z. Bowen Mei, Xiaoxiang Shi, Zhongya Xi, Yuyang Li, "Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm," Combustion and Flame, vol. 231, 111472, 2021, doi: https://doi.org/10.1016/j.combustflame.2021.111472.
    [28] X. He, B. Shu, D. Nascimento, K. Moshammer, M. Costa, and R. Fernandes, "Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures," Combustion and Flame, vol. 206, pp. 189-200, 2019, doi: https://doi.org/10.1016/j.combustflame.2019.04.050.
    [29] J. Chen, X. Jiang, X. Qin, and Z. Huang, "Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure," Fuel, vol. 287, p. 119563, 2021, doi: https://doi.org/10.1016/j.fuel.2020.119563.
    [30] T. Li, Y. Duan, Y. Wang, M. Zhou, and L. Duan, "Research progress of ammonia combustion toward low carbon energy," Fuel Processing Technology, vol. 248, p. 107821, 2023, doi: https://doi.org/10.1016/j.fuproc.2023.107821.
    [31] J. W. Xiaolei Zhang, Ying Chen, and Conghao Li, "Effect of CH4, Pressure, and Initial Temperature on the Laminar Flame Speed of an NH3–Air Mixture," ACS Omega vol. 6, no. 18, 2021, doi: 10.1021/acsomega.1c00080.
    [32] T. F. G. Abdulrahman A. Khateeb, Xuren Zhu, Mourad Younes, Aqil Jamal, William L. Roberts, "Stability limits and exhaust NO performances of ammonia-methane-air swirl flames," Experimental Thermal and Fluid Science, vol. 114, 110058, 2020, doi: https://doi.org/10.1016/j.expthermflusci.2020.110058.
    [33] G. S. Giovanni Battista Ariemma, Raffaele Ragucci, Mara de Joannon, Pino Sabia, "Ammonia/Methane combustion: Stability and NOx emissions," Combustion and Flame, vol. 241, 112071, 2022, doi: https://doi.org/10.1016/j.combustflame.2022.112071.
    [34] E. C. O. Kapuruge Don Kunkuma Amila Somarathne, Daiki Sugawara, Akihiro Hayakawa, Hideaki Kobayashi, "Effects of OH concentration and temperature on NO emission characteristics of turbulent non-premixed CH4/NH3/air flames in a two-stage gas turbine like combustor at high pressure," Proceedings of the Combustion Institute, vol. 38, no. 4, pp. 5163-5170, 2021, doi: https://doi.org/10.1016/j.proci.2020.06.276.
    [35] A. V.-M. Hua Xiao, Philip J Bowen, "Study on premixed combustion characteristics of co-firing ammonia/methane fuels," Energy, vol. 140, 1, pp. 125-135, 2017, doi: https://doi.org/10.1016/j.energy.2017.08.077.
    [36] C. T. C. Siqi Wang, Tian Xie, Viktor Józsa, Jo-Han Ng, "Ammonia/methane dual-fuel injection and Co-firing strategy in a swirl flame combustor for pollutant emissions control," Energy, vol. 281, 128221, 2023, doi: https://doi.org/10.1016/j.energy.2023.128221.
    [37] C. T. C. Siqi Wang, Viktor Józsa, Meng-Choung Chiong, "Investigation of NO emissions and chemical reaction kinetics of ammonia/methane flames under dual-fuel co-combustion mode at elevated air temperature conditions," International Journal of Hydrogen Energy, vol. 84, pp. 968-981, 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.08.202.
    [38] A. M. A. Ayman M. Elbaz, Shixing Wang, William L. Roberts, "Stability and characteristics of NH3/CH4/air flames in a combustor fired by a double swirl stabilized burner," Proceedings of the Combustion Institute, vol. 39, no. 4, pp. 4205-4213, 2023, doi: https://doi.org/10.1016/j.proci.2022.06.004.
    [39] Y. A. Akihiro Hayakawa, Rentaro Mimoto, K.D. Kunkuma A. Somarathne, Taku Kudo, Hideaki Kobayashi, "Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor," International Journal of Hydrogen Energy, vol. 42, no. 19, pp. 14010-14018, 2017, doi: https://doi.org/10.1016/j.ijhydene.2017.01.046.
    [40] T. F. G. Guoqing Wang, Santiago Cardona, Cristian Avila Jimenez, William L. Roberts, "Effects of residence time on the NOx emissions of premixed ammonia-methane-air swirling flames at elevated pressure," Proceedings of the Combustion Institute, vol. 39, no. 4, pp. 4277-4288, 2023, doi: https://doi.org/10.1016/j.proci.2022.07.141.
    [41] H.-C. Lin, G.-B. Chen, F.-H. Wu, H.-Y. Li, and Y.-C. Chao, "An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion," Energies, vol. 12, no. 11, p. 2168, 2019, doi: https://doi.org/10.3390/en12112168.
    [42] Y.-T. Wu, C.-W. Chang, P.-H. Lin, Y.-H. Li, J. Lasek, and H.-K. Kan, "Improving Particle-Burning Efficiency of Pulverized Coal in New Inclined Jet Burners," International Journal of Energy Research, vol. 2024, no. 1, p. 5372410, 2024, doi: https://doi.org/10.1155/er/5372410.
    [43] M. A. M. T. Boushaki, J.C. Sautet, B. Labegorre, "Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner," Experimental Thermal and Fluid Science, vol. 32, no. 7, pp. 1363-1370, 2008, doi: https://doi.org/10.1016/j.expthermflusci.2007.11.009.
    [44] R. D. Lamboll, Z. R. J. Nicholls, C. J. Smith, J. S. Kikstra, E. Byers, and J. Rogelj, "Assessing the size and uncertainty of remaining carbon budgets," Nature Climate Change, vol. 13, pp. 1360-1367, 2023, doi: 10.1038/s41558-023-01848-5.
    [45] E. H. Mehrdad Kiani, Mehdi Ashjaee, "An experimental and numerical study on the combustion and flame characteristics of hydrogen in intersecting slot burners," International Journal of Hydrogen Energy, vol. 43, no. 5, pp. 3034-3049, 2018, doi: https://doi.org/10.1016/j.ijhydene.2017.12.126.
    [46] C.-P. Chiu, S.-I. Yeh, Y.-C. Tsai, and J.-T. Yang, "An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame with Varied H2/CO Proportion," Energies, vol. 10, no. 7, p. 900, 2017. [Online]. Available: https://www.mdpi.com/1996-1073/10/7/900.
    [47] C.-C. Li , Chen ,Jing-Wei and Yang ,Jing-Tang, "Stabilization of Double Flames Interacting with the Intersecting Flow on a V-Shaped Burner," Combustion Science and Technology, vol. 184, no. 12, 2117, 2012, doi: https://doi.org/10.1080/00102202.2012.703728.
    [48] M. A. Wubin Weng, Zhongshan Li, "Visible chemiluminescence of ammonia premixed flames and its application for flame diagnostics," Proceedings of the Combustion Institute, vol. 39, no. 4, pp. 4327-4334, 2023, doi: https://doi.org/10.1016/j.proci.2022.08.012.
    [49] Y. Liu, J. Tan, M. Wan, L. Zhang, and X. Yao, "Quantitative measurement of OH* and CH* chemiluminescence in jet diffusion flames," ACS omega, vol. 5, no. 26, pp. 15922-15930, 2020, doi: https://doi.org/10.1021/acsomega.0c01093.
    [50] S. Karnani and D. Dunn-Rankin, "Visualizing CH* chemiluminescence in sooting flames," Combustion and Flame, vol. 160, no. 10, pp. 2275-2278, 2013, doi: https://doi.org/10.1016/j.combustflame.2013.05.002.
    [51] X. Zhu, W. L. Roberts, and T. F. Guiberti, "UV-visible chemiluminescence signature of laminar ammonia-hydrogen-air flames," Proceedings of the Combustion Institute, vol. 39, no. 4, pp. 4227-4235, 2023, doi: https://doi.org/10.1016/j.proci.2022.07.021.
    [52] D. Pugh et al., "An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions," Proceedings of the combustion institute, vol. 38, no. 4, pp. 6451-6459, 2021, doi: https://doi.org/10.1016/j.proci.2020.06.310.
    [53] J. Choe and W. Sun, "Experimental investigation of non-equilibrium plasma-assisted ammonia flames using NH2* chemiluminescence and OH planar laser-induced fluorescence," Proceedings of the Combustion Institute, vol. 39, no. 4, pp. 5439-5446, 2023, doi: https://doi.org/10.1016/j.proci.2022.07.001.
    [54] A. Karan et al., "Investigating the role of NH2* as an indicator of preferential diffusion effects in premixed NH3/air flames," Fuel, vol. 395, p. 135139, 2025, doi: https://doi.org/10.1016/j.fuel.2025.135139.
    [55] A. Karan, G. Dayma, C. Chauveau, and F. Halter, "Experimental study on curvature effects and preferential diffusion for perturbed laminar premixed ammonia-air flames," Journal of Ammonia Energy, vol. 1, no. 1, 2023, doi: https://doi.org/10.18573/jae.16.
    [56] Y.-H. Li, C.-Y. Wu, B.-C. Chen, and Y.-C. Chao, "Measurements of a high-luminosity flame structure by a shuttered PIV system," Measurement Science and Technology, vol. 19, no. 4, p. 045401, 2008, doi: 10.1088/0957-0233/19/4/045401.
    [57] M. Bross, T. Fuchs, and C. J. Kähler, "Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers," Journal of Fluid Mechanics, vol. 873, pp. 287-321, 2019, doi: https://doi.org/10.1017/jfm.2019.408.
    [58] C. Cierpka, R. Hain, and N. A. Buchmann, "Flow visualization by mobile phone cameras," Experiments in fluids, vol. 57, pp. 1-10, 2016, doi: https://doi.org/10.1007/s00348-016-2192-y.
    [59] A. A. K. Xuren Zhu, William L. Roberts, Thibault F. Guiberti, "Chemiluminescence signature of premixed ammonia-methane-air flames," Combustion and Flame, vol. 231, 111508, 2021, doi: https://doi.org/10.1016/j.combustflame.2021.111508.
    [60] S. Z. Rodolfo C. Rocha, Leilei Xu, Xue-Song Bai, Mário Costa, Xiao Cai, Haisol Kim, Christian Brackmann, Zhongshan Li, and Marcus Aldén, "Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio," Energy & Fuels, vol. 35, no. 9, 2021 doi: 10.1021/acs.energyfuels.0c03520.
    [61] Q. Chen, J. Zhao, Z. Zhang, and X. Wei, "The oxidation of NH3/CO/O2/H2O system in a plug flow reactor: Experimental and kinetic modeling study," Fuel, vol. 379, p. 133039, 2025, doi: https://doi.org/10.1016/j.fuel.2024.133039.
    [62] D. Wang, Z.-Y. Tian, Q.-L. Li, J.-J. Kuang, and X.-P. Yu, "Kinetic analysis on the hydrogen cyanide formation in the premixed methane/ammonia flame," Fuel, vol. 380, p. 133046, 2025, doi: https://doi.org/10.1016/j.proci.2024.105676.
    [63] P. Dagaut, P. Glarborg, and M. U. Alzueta, "The oxidation of hydrogen cyanide and related chemistry," Progress in Energy and Combustion Science, vol. 34, no. 1, pp. 1-46, 2008, doi: https://doi.org/10.1016/j.pecs.2007.02.004.

    無法下載圖示 校內:2028-08-31公開
    校外:2028-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE