簡易檢索 / 詳目顯示

研究生: 郭上禎
Guo, Shang-Zhen
論文名稱: 以複合濾料水質淨化系統現地處理優養化水庫總有機碳:模場效能、操作條件與淨化機制之研究
Study of on-site removal characteristics of Total Organic Carbon from Eutrophic Water using multi-soil-layering system
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 164
中文關鍵詞: 複合濾料水質淨化系統總有機碳天然有機物螢光激發/發射陣列光譜平行因子分析逐步集群分析
外文關鍵詞: MSL, TOC, NOM, FEEM, PARAFAC, SCA
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離島水庫水質優養化程度高,藻類釋出蛋白質及胺基酸、水淺陽光直射使底泥腐植質釋出、集水區雨水逕流帶出黃酸和腐植酸,再加上水庫缺乏循環活化,上述濃度高且來源複雜的天然有機物(Natural Organic Matter, NOM)長時間累積於水體,使離島水庫構成特殊之「優養-高有機碳」水質特性,水中總有機碳(Total Organic Carbon, TOC)濃度幾乎無法符合飲用水水源水質標準。澎湖成功水庫夏、秋兩季(豐水期)TOC濃度介於6-10 mg/L,冬、春季(枯水期)介於9-14mg/L,水庫高TOC濃度增加處理成本與消毒副產物生成風險。
    複合濾料水質淨化系統(Multi-Soil-Layering, MSL)是一種源自日本的土壤滲濾改良工法,其將土壤與鐵、碳粉及有機質等複合濾料包覆在磚型土工包內強化土壤功能,再透過土工包層與沸石或礫石構成的透水層之成層磚砌結構改善阻塞與短流。因此,相較於傳統土壤處理工法,MSL具有進流水濃度接受範圍寬,面積負荷率高,且能強化土壤對懸浮物、營養鹽及有機物淨化功能之優點。本研究於澎湖成功水庫旁設置最大處理量40 CMD的MSL試驗模場(4槽MSL獨立操作、4個MSL槽的土工包分別以不同比例的複合濾料混合現地土壤調配而成、面積負荷率為500-3000 L/m2/day),進流水取自水庫,先通過工研院專利生物網膜系統(BioNet)前處理後再進入MSL單元。利用現地模場能處理季節性變動原水水質之優勢,本研究完整評析MSL在動態水質變化下,對TOC的去除效果,並以逐步集群分析法建立水庫原水水質參數、環境因子等連續性變數與TOC去除率關係之模型,同時結合螢光激發/發射陣列光譜、平均螢光強度分析與平行因子分析方法解析水庫原水NOM成分及其在模場淨水程序(BioNet及MSL)中的變化,探討原水中NOM可能的來源與特性,並進一步討論NOM去除機制。
    試驗期間BioNet在進流量為15–40 CMD,HRT為1.4–3 hr的操作條件下,對TOC之平均去除率僅6–18%,且出流水無法符合飲用水水源水質標準。MSL對TOC去除率有明顯季節性變化,去除率介於20–60%,夏、秋季時,在HLR為1000–2000 L/m2/d的操作條件下,出流水TOC濃度可符合飲用水水源水質標準,冬、春季時,進流水濃度高且MSL去除率不佳,僅於春季時,在進流原水TOC濃度低於10 mg/L且HLR低於1000 L/m2/d的條件下,出流水TOC濃度可符合飲用水水源水質標準,顯見HLR及水溫為影響TOC去除率的重要因子,由SCI模型結果亦得MSL對TOC的去除主要由水溫、HLR、進流水TOC控制。
    由PARAFAC分析結果可得,進流原水包含三個主要NOM成分,分別為類黃酸物質、類腐植酸物質與類蛋白物質。進流原水所含類蛋白物質比例由第一試程的20%逐步增加至第五試程的37%,表示水中約60–80%的有機物難以為生物分解,為BioNet對TOC去除率不佳的可能原因。由AFI及PARAFAC分析結果可得,經MSL處理後NOM成分比例變化有限,夏、秋季MSL對生物易分解之NOM去除率較佳,推測因水溫較高,生物活性佳。冬、春季MSL對生物易分解及不易分解之NOM去除率相當,除了第五試程因生物易分解之NOM比例較高,故生物分解比例高。冬季MSL對各NOM成分去除率相當,且在相同操作條件下皆低於其它試程,故推測水溫低除了會降低生物分解效果,亦會使類黃酸及類腐植酸等疏水性NOM吸附效果不佳,由此可知,水溫為影響TOC去除率的重要因素。此外,由NOM成分分析結果推測生物在好氧條件下將類蛋白物質分解為CO2,因進流水pH較高,CO2較易溶入水中,故使得MSL出流水pH下降。

    Outlying reservoirs have high degree of eutrophication. The total organic carbon (TOC) of the water can hardly meet the water quality standard of drinking water source. The TOC concentration of Chenggong Reservoir in summer and autumn (wet season) is between 6-10 mg/L, and winter and spring (dry season) is between 9-14 mg/L. Multi-Soil-Layering (MSL) is an improved method of soil infiltration originated from Japan. MSL wraps the composite filter materials such as soil, iron, charcoal and organics in a brick-like bag called Soil Mixture Bricks(SMB) to strengthen soil function, and then use the brick-like layer pattern with soil mixture layer and permeable layer composed of zeolite or gravel to improve the clogging and short-circuit. a MSL system(pilot scale) with a maximum treating capacity of 40 CMD and four treatment tanks which are operated independently and have SMBs that consist of different ratio of filter materials is set up aside Chenggong Reservoir. The influent water is taken from the reservoir, and then pumped into the MSL unit after pretreating by BioNet. This study fully evaluates the effect of MSL on TOC removal under dynamic change of water quality by the advantage of pilot study. Additionally, Stepwise Cluster Analysis is used to establish a model of the relationship between continual variables such as water quality parameters of raw water, environmental factors, and TOC removal rate by MSL. Combine Fluorescence Excitation Emission Matrix, Average Fluorescence Intensity and Parallel Factor Analysis method to analyze the composition of NOM in raw water and its change in the purification process(BioNet+MSL) and discuss the removal mechanism of NOM.

    摘要 I 致謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIV 第 1 章 緒論 1 1.1 研究動機 1 1.1.1 離島水庫高有機碳濃度原水 1 1.1.2 高有機碳濃度原水的負面影響 2 1.1.3 MSL的選擇與模場試驗的必要性 3 1.2 研究目的 4 1.3 論文架構 5 第 2 章 文獻回顧 6 2.1 天然有機物 6 2.1.1 天然有機物來源 6 2.1.2 天然有機物組成與特性 7 2.1.3 天然有機物團塊參數 9 2.1.4 天然有機物對淨水程序的影響 11 2.2 離島水庫高有機碳濃度原水 12 2.2.1 對水庫管理單位及淨水場的負面影響 13 2.2.2 高有機碳濃度原水改善與處理方法 15 2.3 土壤滲濾系統 16 2.3.1 傳統土壤滲濾系統的缺陷 17 2.3.2 MSL工法與原理 18 2.3.3 MSL模場與實驗室尺度之研究回顧 22 2.4 集群分析法 25 2.4.1 階層式集群分析法 26 2.4.2 逐步集群分析法 27 2.5 NOM成分分析方法 28 2.5.1 螢光激發/發射陣列光譜 31 2.5.2 FEEM結合多變量統計分析 34 第 3 章 研究方法 35 3.1 研究區域 35 3.1.1 成功水庫簡介 35 3.1.2 成功水庫水質 36 3.2 MSL試驗模場 39 3.2.1 MSL試驗模場系統流程 41 3.2.2 BioNet 42 3.2.3 MSL材料與結構 43 3.2.4 模場試驗試程規劃 45 3.3 水質分析方法 50 3.3.1 總有機碳 50 3.3.2 非揮發溶解性有機碳 51 3.3.3 UV254與SUVA 52 3.4 逐步集群分析法 53 3.5 螢光光譜法 56 3.5.1 螢光激發/發射陣列光譜 56 3.5.2 平行因子分析 58 第 4 章 結果與討論 60 4.1 MSL模場水質淨化效果 60 4.1.1 進流水庫原水水質 61 4.1.2 BioNet水質淨化效果 68 4.1.3 MSL水質淨化效果 79 4.2 TOC出流水濃度與去除率預測模型建立 92 4.2.1 SCI模型建立 92 4.2.2 情境分析 100 4.2.3 MSL操作條件與環境因子對TOC去除率影響 103 4.3 系統中NOM成分變化 104 4.3.1 螢光激發/發射陣列光譜 104 4.3.2 平行因子分析 108 4.3.3 小結 116 4.4 系統TOC去除機制與其它水質之關係 118 第 5 章 結果與討論 123 5.1 結論 123 5.2 建議 127 第 6 章 參考文獻 128 附錄 139 附錄一 進流水庫原水(W1)水質彙整(95%信賴區間) 139 附錄二 BIONET出流水(W2)水質彙整(95%信賴區間) 141 附錄三 MSL出流水(W3、W4、W5、W6)水質彙整(95%信賴區間) 143 附錄四 MSL各項水質平均去除率彙整 151 附錄五 FEEM光譜圖 159

    Allpike, B. P., Heitz, A., Joll, C. A., Kagi, R. I., Abbt-Braun, G., Frimmel, F. H., . . . Amy, G. (2005). Size exclusion chromatography to characterize DOC removal in drinking water treatment. Environmental science & technology, 39(7), 2334-2342. Retrieved from <Go to ISI>://WOS:000228172600068. doi:10.1021/es0496468
    Baghoth, S. A., Sharma, S. K., & Amy, G. L. (2011). Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Research, 45(2), 797-809. Retrieved from <Go to ISI>://WOS:000286790500039. doi:10.1016/j.watres.2010.09.005
    Baker, A. (2001). Fluorescence Excitation−Emission Matrix Characterization of Some Sewage-Impacted Rivers. Environmental science & technology, 35(5), 948-953. Retrieved from https://doi.org/10.1021/es000177t. doi:10.1021/es000177t
    Bieroza, M., Baker, A., & Bridgeman, J. (2009). Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment. Science of the Total Environment, 407(5), 1765-1774. Retrieved from <Go to ISI>://WOS:000263990600028. doi:10.1016/j.scitotenv.2008.11.013
    Boonsook, P., Luanmanee, S., Attanandana, T., Kamidouzono, A., Masunaga, T., & Wakatsuki, T. (2003). A comparative study of permeable layer materials and aeration regime on efficiency of multi-soil-layering system for domestic wastewater treatment in Thailand. Soil Science and Plant Nutrition, 49(6), 873-882. Retrieved from <Go to ISI>://WOS:000187237500012. doi:10.1080/00380768.2003.10410350
    Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2017). Chapter 10 - Specialized and Advanced Water Treatment Processes. In M. J. Brandt, K. M. Johnson, A. J. Elphinston, & D. D. Ratnayaka (Eds.), Twort's Water Supply (Seventh Edition) (pp. 407-473). Boston: Butterworth-Heinemann.
    Chen, M., & Hur, J. (2015). Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review. Water Research, 79, 10-25. Retrieved from http://www.sciencedirect.com/science/article/pii/S004313541500247X. doi:https://doi.org/10.1016/j.watres.2015.04.018
    Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 37(24), 5701-5710. Retrieved from <Go to ISI>://WOS:000187248000031. doi:10.1021/es034354c
    Chen, X., Luo, A. C., Sato, K., Wakatsuki, T., & Masunaga, T. (2009). An introduction of a multi-soil-layering system: a novel green technology for wastewater treatment in rural areas. Water and Environment Journal, 23(4), 255-262. Retrieved from <Go to ISI>://WOS:000272132800002. doi:10.1111/j.1747-6593.2008.00143.x
    Chen, X., Sato, K., Wakatsuki, T., & Masunaga, T. (2007). Effect of aeration and material composition in soil mixture block on the removal of colored substances and chemical oxygen demand in livestock wastewater using multi-soil-layering systems. Soil Science and Plant Nutrition, 53(4), 509-516. Retrieved from <Go to ISI>://WOS:000248802900019. doi:10.1111/j.1747-0765.2007.00156.x
    Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325-346. Retrieved from https://www.sciencedirect.com/science/article/pii/0304420395000623. doi:https://doi.org/10.1016/0304-4203(95)00062-3
    Collado, S., Oulego, P., Suárez-Iglesias, O., & Díaz, M. (2018). Biodegradation of dissolved humic substances by fungi. Applied Microbiology and Biotechnology, 102(8), 3497-3511. Retrieved from https://doi.org/10.1007/s00253-018-8851-6. doi:10.1007/s00253-018-8851-6
    Croué, J.-P. (2004). Isolation of Humic and Non-Humic NOM Fractions: Structural Characterization. Environmental Monitoring and Assessment, 92(1), 193-207. Retrieved from https://doi.org/10.1023/B:EMAS.0000039369.66822.c0. doi:10.1023/B:EMAS.0000039369.66822.c0
    Danielsson, L. (1982). On the use of filters for distinguishing between dissolved and particulate fractions in natural waters. Water Research, 16, 179-182.
    Deirmendjian, L., Lambert, T., Morana, C., Steven, Descy, J. P., Okello, W., & Borges, A. V. (2020). Dissolved organic matter composition and reactivity in Lake Victoria, the world's largest tropical lake. Biogeochemistry, 150(1), 61-83. Retrieved from <Go to ISI>://WOS:000545180600001. doi:10.1007/s10533-020-00687-2
    Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced coagulation: US requirements and a broader view. Water Science and Technology, 40(9), 63-70. Retrieved from https://www.sciencedirect.com/science/article/pii/S0273122399006411. doi:https://doi.org/10.1016/S0273-1223(99)00641-1
    Fang, J., Yang, X., Ma, J., Shang, C., & Zhao, Q. (2010). Characterization of algal organic matter and formation of DBPs from chlor(am)ination. Water Research, 44(20), 5897-5906. Retrieved from http://www.sciencedirect.com/science/article/pii/S004313541000477X. doi:https://doi.org/10.1016/j.watres.2010.07.009
    Gülagiz, F. K., & Sahin, S. (2017). Comparison of hierarchical and non-hierarchical clustering algorithms. International Journal of Computer Engineering and Information Technology, 9(1), 6.
    Galapate, R. P., Kitanaka, A., Ito, K., Mukai, T., Shoto, E., & Okada, M. (1997). Origin of trihalomethane (thm) precursors in kurose river, Hiroshima, Japan. Water Science and Technology, 35(8), 15-20. Retrieved from https://www.sciencedirect.com/science/article/pii/S0273122397001467. doi:https://doi.org/10.1016/S0273-1223(97)00146-7
    Garcia, R. D., Reissig, M., Queimaliños, C. P., Garcia, P. E., & Dieguez, M. C. (2015). Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Science of the Total Environment, 521, 280-292.
    Guan, Y. D., Chen, X., Zhang, S., & Luo, A. C. (2012). Performance of multi-soil-layering system (MSL) treating leachate from rural unsanitary landfills. Science of the Total Environment, 420, 183-190. Retrieved from <Go to ISI>://WOS:000301991200019. doi:10.1016/j.scitotenv.2011.12.057
    Guan, Y. D., Zhang, Y., Zhong, C. N., Huang, X. F., Fu, J., & Zhao, D. Y. (2015). Effect of operating factors on the contaminants removal of a soil filter: multi-soil-layering system. Environmental Earth Sciences, 74(3), 2679-2686. Retrieved from <Go to ISI>://WOS:000358073800069. doi:10.1007/s12665-015-4288-8
    He, L., Huang, G. H., Lu, H. W., & Zeng, G. M. (2008). Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty. Environmental science & technology, 42(6), 2009-2014. Retrieved from <Go to ISI>://WOS:000253947700036. doi:10.1021/es071106y
    Her, N., Amy, G., McKnight, D., Sohn, J., & Yoon, Y. (2003). Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research, 37(17), 4295-4303. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043135403003178. doi:https://doi.org/10.1016/S0043-1354(03)00317-8
    Ho, C. C., & Wang, P. H. (2015). Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials. International Journal of Environmental Research and Public Health, 12(3), 3362-3380. Retrieved from <Go to ISI>://WOS:000351929700068. doi:10.3390/ijerph120303362
    Huang, G. (1992). A stepwise cluster analysis method for predicting air quality in an urban environment. Atmospheric Environment. Part B. Urban Atmosphere, 26(3), 349-357.
    Huang, G., Huang, Y., Wang, G., & Xiao, H. (2006). Development of a forecasting system for supporting remediation design and process control based on NAPL‐biodegradation simulation and stepwise‐cluster analysis. Water resources research, 42(6).
    Huang, M., Li, Z., Huang, B., Luo, N., Zhang, Q., Zhai, X., & Zeng, G. (2018). Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses. Journal of Hazardous Materials, 344, 539-548.
    Humbert, H., Gallard, H., Suty, H., & Croue, J. P. (2005). Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Research, 39(9), 1699-1708. Retrieved from <Go to ISI>://WOS:000229670400003. doi:10.1016/j.watres.2005.02.008
    Jenssen, P., & Siegrist, R. (1990). Technology assessment of wastewater treatment by soil infiltration systems. Water Science and Technology, 22(3-4), 83-92.
    Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 165(4), 277-304. Retrieved from <Go to ISI>://WOS:000086772600001. doi:10.1097/00010694-200004000-00001
    Kanarek, A., & Michail, M. (1996). Groundwater recharge with municipal effluent: Dan region reclamation project, Israel. Water Science and Technology, 34(11), 227-233. Retrieved from http://www.sciencedirect.com/science/article/pii/S0273122396008426. doi:https://doi.org/10.1016/S0273-1223(96)00842-6
    Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., & Benedetti, M. F. (1998). Chapter 23 - Ion Binding to Humic Substances: Measurements, Models, and Mechanisms. In E. A. Jenne (Ed.), Adsorption of Metals by Geomedia (pp. 483-520). San Diego: Academic Press.
    Latrach, L., Ouazzani, N., Hejjaj, A., Mahi, M., Masunaga, T., & Mandi, L. (2018). Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate. International Journal of Hygiene and Environmental Health, 221(1), 64-80. Retrieved from <Go to ISI>://WOS:000423002700009. doi:10.1016/j.ijheh.2017.10.004
    Latrach, L., Ouazzani, N., Masunaga, T., Hejjaj, A., Bouhoum, K., Mahi, M., & Mandi, L. (2016). Domestic wastewater disinfection by combined treatment using multi-soil-layering system and sand filters (MSL-SF): A laboratory pilot study. Ecological Engineering, 91, 294-301. Retrieved from <Go to ISI>://WOS:000374766500037. doi:10.1016/j.ecoleng.2016.02.036
    Li, W., Liang, C., Dong, L., Zhao, X., & Wu, H. (2021). Accumulation and characteristics of fluorescent dissolved organic matter in loess soil-based subsurface wastewater infiltration system with aeration and biochar addition. Environmental Pollution, 269, 116100. Retrieved from https://www.sciencedirect.com/science/article/pii/S0269749120367890. doi:https://doi.org/10.1016/j.envpol.2020.116100
    Liang, L., & Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental science & technology, 37(13), 2920-2928.
    Luanmanee, S., Boonsook, P., Attanandana, T., Saitthiti, B., Panichajakul, C., & Wakatsuki, T. (2002). Effect of intermittent aeration regulation of a multi-soil-layering system on domestic wastewater treatment in Thailand. Ecological Engineering, 18(4), 415-428. Retrieved from <Go to ISI>://WOS:000175810500002. doi:10.1016/s0925-8574(01)00103-3
    Luanmanee, S., Boonsook, P., Attanandana, T., & Wakatsuki, T. (2002). Effect of organic components and aeration regimes on the efficiency of a multi-soil-layering system for domestic wastewater treatment. Soil Science and Plant Nutrition, 48(2), 125-134. Retrieved from <Go to ISI>://WOS:000174761500001. doi:10.1080/00380768.2002.10409182
    Ma, Q., Qu, Y. Y., Shen, W. L., Zhang, Z. J., Wang, J. W., Liu, Z. Y., . . . Zhou, J. T. (2015). Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 179, 436-443. Retrieved from <Go to ISI>://WOS:000348041600058. doi:10.1016/j.biortech.2014.12.041
    Martens, H., & Naes, T. (1992). Multivariate calibration: John Wiley & Sons.
    Masunaga, T., Sato, K., Mori, J., Shirahama, M., Kudo, H., & Wakatsuki, T. (2007). Characteristics of wastewater treatment using a multi-soil-layering system in relation to wastewater contamination levels and hydraulic loading rates. Soil Science and Plant Nutrition, 53(2), 215-223. Retrieved from <Go to ISI>://WOS:000244596200012. doi:10.1111/j.1747-0765.2007.00128.x
    Masunaga, T., Sato, K., Zennami, T., Fujii, S., & Wakatsuki, T. (2003). Direct treatment of polluted river water by the multi-soil-layering method. Journal of Water and Environment Technology, 1(1), 97-104. doi:10.2965/jwet.2003.97
    Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpaa, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83(11), 1431-1442. Retrieved from <Go to ISI>://WOS:000291381200003. doi:10.1016/j.chemosphere.2011.01.018
    Matilainen, A., & Sillanpaa, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80(4), 351-365. Retrieved from <Go to ISI>://WOS:000279447400001. doi:10.1016/j.chemosphere.2010.04.067
    Matilainen, A., Vepsalainen, M., & Sillanpaa, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 159(2), 189-197. Retrieved from <Go to ISI>://WOS:000282149000008. doi:10.1016/j.cis.2010.06.007
    Meng, F. G., Huang, G. C., Yang, X., Li, Z. Q., Li, J., Cao, J., . . . Sun, L. (2013). Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Research, 47(14), 5027-5039. Retrieved from <Go to ISI>://WOS:000324566400022. doi:10.1016/j.watres.2013.05.043
    Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557-6566.
    Murphy, K. R., Stedmon, C. A., Waite, T. D., & Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108(1-2), 40-58.
    Nie, J. Y., Zhu, N. W., Zhao, K., Wu, L., & Hu, Y. H. (2011). Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging. Water Science and Technology, 63(7), 1412-1417. Retrieved from <Go to ISI>://WOS:000290217600012. doi:10.2166/wst.2011.319
    Niu, Z. G., Hu, X. P., Zhang, Y., & Sun, Y. Y. (2017). Effect of chlorine dosage in prechlorination on trihalomethanes and haloacetic acids during water treatment process. Environmental Science and Pollution Research, 24(5), 5068-5077. Retrieved from <Go to ISI>://WOS:000397007200074. doi:10.1007/s11356-016-8265-x
    Owen, D. M., Amy, G. L., & Chowdhury, Z. K. (1993). Characterization of natural organic matter and its relationship to treatability: Foundation and American Water Works Association.
    Pattnaik, R., Yost, R. S., Porter, G., Masunaga, T., & Attanandana, T. (2008). Improving multi-soil-layer (MSL) system remediation of dairy effluent. Ecological Engineering, 32(1), 1-10. Retrieved from <Go to ISI>://WOS:000252768500001. doi:10.1016/j.ecoleng.2007.08.006
    Peiris, R. H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P. M., & Legge, R. L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135409006198. doi:https://doi.org/10.1016/j.watres.2009.09.036
    Persson, T., & Wedborg, M. (2001). Multivariate evaluation of the fluorescence of aquatic organic matter. Analytica Chimica Acta, 434(2), 179-192. Retrieved from https://www.sciencedirect.com/science/article/pii/S0003267001008121. doi:https://doi.org/10.1016/S0003-2670(01)00812-1
    Pivokonsky, M., Kloucek, O., & Pivokonska, L. (2006). Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Research, 40(16), 3045-3052. Retrieved from <Go to ISI>://WOS:000240843200008. doi:10.1016/j.watres.2006.06.028
    Prasad, G., Kentilitisca, J. Y., Ramesh, M. V., & Suresh, N. (2020, 2020//). An Overview of Natural Organic Matter. Paper presented at the ICDSMLA 2019, Singapore.
    Qin, X. S., Huang, G. H., & Chakma, A. (2007). A stepwise-inference-based optimization system for supporting remediation of petroleum-contaminated sites. Water Air and Soil Pollution, 185(1-4), 349-368. Retrieved from <Go to ISI>://WOS:000249635700030. doi:10.1007/s11270-007-9458-1
    Rao, C. R. (1952). Advanced statistical methods in biometric research.
    Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14(1), 57-74.
    Sanchez, N. P., Skeriotis, A. T., & Miller, C. M. (2013). Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation-filtration in a full scale water treatment plant. Water Research, 47(4), 1679-1690. Retrieved from <Go to ISI>://WOS:000315977000016. doi:10.1016/j.watres.2012.12.032
    Sato, K., Iwashima, N., Wakatsuki, T., & Masunaga, T. (2011). Quantitative evaluation of treatment processes and mechanisms of organic matter, phosphorus, and nitrogen removal in a multi-soil-layering system. Soil Science and Plant Nutrition, 57(3), 475-486. Retrieved from <Go to ISI>://WOS:000293673800012. doi:10.1080/00380768.2011.590944
    Sato, K., Masunaga, T., & Wakatsuki, T. (2005a). Characterization of treatment processes and mechanisms of COD, phosphorus and nitrogen removal in a multi-soil-layering system. Soil Science and Plant Nutrition, 51(2), 213-221. Retrieved from <Go to ISI>://WOS:000229262900006. doi:10.1111/j.1747-0765.2005.tb00025.x
    Sato, K., Masunaga, T., & Wakatsuki, T. (2005b). Water movement characteristics in a multi-soil-layering system. Soil Science and Plant Nutrition, 51(1), 75-82. Retrieved from <Go to ISI>://WOS:000228122400009. doi:10.1111/j.1747-0765.2005.tb00009.x
    Sato, K., Wakatsuki, T., Iwashima, N., & Masunaga, T. (2019). Evaluation of Long-Term Wastewater Treatment Performances in Multi-Soil-Layering Systems in Small Rural Communities. Applied and Environmental Soil Science, 2019, 11. Retrieved from <Go to ISI>://WOS:000483046600001. doi:10.1155/2019/1214368
    Sgroi, M., Roccaro, P., Korshin, G. V., & Vagliasindi, F. G. (2017). Monitoring the behavior of emerging contaminants in wastewater-impacted rivers based on the use of fluorescence excitation emission matrixes (EEM). Environmental science & technology, 51(8), 4306-4316.
    Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22(4), 464-475. Retrieved from <Go to ISI>://WOS:000243487800008. doi:10.1016/j.envsoft.2006.02.001
    Siegrist, R. L. (1987). Soil clogging during subsurface wastewater infiltration as affected by effluent composition and loading rate. Journal of Environmental Quality, 16(2), 181-187.
    Sillanpaa, M., Ncibi, M. C., Matilainen, A., & Vepsalainen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54-71. Retrieved from <Go to ISI>://WOS:000414881600007. doi:10.1016/j.chemosphere.2017.09.113
    Sillanpää, M. (2014). Natural organic matter in water: Characterization and treatment methods: Butterworth-Heinemann.
    Singh, R. (2015). Chapter 2 - Water and Membrane Treatment. In R. Singh (Ed.), Membrane Technology and Engineering for Water Purification (Second Edition) (pp. 81-178). Oxford: Butterworth-Heinemann.
    Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry: John Wiley & Sons, Ltd.
    Song, P., Huang, G., Hong, Y., An, C., Xin, X., & Zhang, P. (2020). A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems. Chemosphere, 240, 124868. Retrieved from https://www.sciencedirect.com/science/article/pii/S0045653519321071. doi:https://doi.org/10.1016/j.chemosphere.2019.124868
    Song, P., Huang, G. H., An, C. J., Shen, J., Zhang, P., Chen, X. J., . . . Sun, C. X. (2018). Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. Science of the Total Environment, 644, 536-546. Retrieved from <Go to ISI>://WOS:000445164000056. doi:10.1016/j.scitotenv.2018.06.331
    Song, P., Huang, G. H., An, C. J., Xin, X. Y., Zhang, P., Chen, X. J., . . . Yang, X. H. (2021). Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities. Water Research, 188, 12. Retrieved from <Go to ISI>://WOS:000599421400006. doi:10.1016/j.watres.2020.116480
    Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11), 572-579. Retrieved from https://doi.org/10.4319/lom.2008.6.572. doi:https://doi.org/10.4319/lom.2008.6.572
    Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3), 239-254. Retrieved from https://www.sciencedirect.com/science/article/pii/S0304420303000720. doi:https://doi.org/10.1016/S0304-4203(03)00072-0
    Stedmon, C. A., Thomas, D. N., Granskog, M., Kaartokallio, H., Papadimitriou, S., & Kuosa, H. (2007). Characteristics of Dissolved Organic Matter in Baltic Coastal Sea Ice:  Allochthonous or Autochthonous Origins? Environmental science & technology, 41(21), 7273-7279. Retrieved from https://doi.org/10.1021/es071210f. doi:10.1021/es071210f
    Sun, W., Huang, G. H., Zeng, G. M., Qin, X. S., & Sun, X. L. (2009). A stepwise-cluster microbial biomass inference model in food waste composting. Waste Management, 29(12), 2956-2968. Retrieved from <Go to ISI>://WOS:000272375000006. doi:10.1016/j.wasman.2009.06.023
    Thomas, O., El Khorassani, H., Touraud, E., & Bitar, H. (1999). TOC versus UV spectrophotometry for wastewater quality monitoring. Talanta, 50(4), 743-749. Retrieved from https://www.sciencedirect.com/science/article/pii/S0039914099002027. doi:https://doi.org/10.1016/S0039-9140(99)00202-7
    Thurman, E. M. (2012). Organic geochemistry of natural waters (Vol. 2): Springer Science & Business Media.
    Van Cuyk, S., Siegrist, R., Logan, A., Masson, S., Fischer, E., & Figueroa, L. (2001). Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems. Water Research, 35(4), 953-964. Retrieved from <Go to ISI>://WOS:000167033400012. doi:10.1016/s0043-1354(00)00349-3
    Wakatsuki, T., Esumi, H., & Omura, S. (1993). High performance and N & P-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Science and Technology, 27(1), 31-40.
    Widrig, D. L., Gray, K. A., & McAuliffe, K. S. (1996). Removal of algal-derived organic material by preozonation and coagulation: Monitoring changes in organic quality by pyrolysis-GC-MS. Water Research, 30(11), 2621-2632. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135496001625. doi:https://doi.org/10.1016/S0043-1354(96)00162-5
    Wilks, S. S. (1962). Mathematical Statistics> John Wiley & Sons, Inc. New York.
    Wu, P.-H., Cheng, Y.-C., Chen, H.-Y., Chueh, T.-w., Chen, H.-C., Huang, L.-H., . . . Yu, C.-P. (2019). Using the entrapped bioprocess as the pretreatment method for the drinking water treatment receiving eutrophic source water. Environmental Pollution, 248, 57-65. Retrieved from https://www.sciencedirect.com/science/article/pii/S0269749118353259. doi:https://doi.org/10.1016/j.envpol.2019.01.128
    Yu, H. B., Song, Y. H., Tu, X., Du, E. D., Liu, R. X., & Peng, J. F. (2013). Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence. Bioresource Technology, 144, 595-601. Retrieved from <Go to ISI>://WOS:000324280100079.
    Zhang, Z., Lei, Z., Zhang, Z., Sugiura, N., Xu, X., & Yin, D. (2007). Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study. Journal of Hazardous Materials, 149(3), 657-665. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304389407005092. doi:https://doi.org/10.1016/j.jhazmat.2007.04.026
    Zhong, C. M., Miao, D. Q., & Franti, P. (2011). Minimum spanning tree based split-and-merge: A hierarchical clustering method. Information Sciences, 181(16), 3397-3410. Retrieved from <Go to ISI>://WOS:000291771400008. doi:10.1016/j.ins.2011.04.013
    Zhou, S. L., Sun, Y., Zhang, Y. R., Huang, T. L., Zhou, Z. Z., Li, Y., & Li, Z. X. (2020). Pollutant removal performance and microbial enhancement mechanism by water-lifting and aeration technology in a drinking water reservoir ecosystem. Science of the Total Environment, 709, 13. Retrieved from <Go to ISI>://WOS:000512281700022. doi:10.1016/j.scitotenv.2019.135848
    Zhou, Z. Z., Huang, T. L., Gong, W. J., Li, Y., Liu, Y., & Zhou, S. L. (2019). Field Research on Mixing Aeration in a Drinking Water Reservoir: Performance and Microbial Community Structure. International Journal of Environmental Research and Public Health, 16(21), 17. Retrieved from <Go to ISI>://WOS:000498842000167. doi:10.3390/ijerph16214221
    台灣行政院環境保護署. (1997). 飲用水水源水質標準. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040018
    成功大學水質研究中心. (2014). 鳳山水庫原水處理改善研究期末報告. Retrieved from
    邱鉑彥, & 吳隆正. (2019). 金門太湖淨水場奈濾(NF)薄膜處理成效.
    黃志彬. (2012). 淨水場供水水質改善最適對策評估研究-以金門自來水廠為例.
    經濟部水利署. (2012). 淨水場供水水質改善最適對策評估研究-以金門自來水廠為例.
    澎湖縣政府環境保護局. (2020). 澎湖縣環保統計通報. Retrieved from https://www.penghu.gov.tw/userfiles/146/files/108%E5%B9%B4%E5%BA%A6%E6%BE%8E%E6%B9%96%E7%B8%A3%E9%A3%B2%E7%94%A8%E6%B0%B4%E6%B0%B4%E8%B3%AA%E6%8A%BD%E9%A9%97%E6%A6%82%E6%B3%81.pdf
    澎湖縣環保局. (2017). 澎湖縣水庫水質治理方案. Retrieved from
    環境資訊中心(TEIA). (2011). 2011年9月25日聯合報金門報導:自來水有紅蟲,金門開戰2周應變. Retrieved from https://e-info.org.tw/node/70470

    下載圖示 校內:2024-09-29公開
    校外:2024-09-29公開
    QR CODE