簡易檢索 / 詳目顯示

研究生: 劉秉恩
Liu, Bing-En
論文名稱: 新冠疫情對台灣勞動力與每人可支配所得的影響
The Impact of the COVID-19 Pandemic on Taiwan's Workforce and per Capita Disposable Income
指導教授: 劉亞明
Liu, Ya-Ming
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 63
中文關鍵詞: 新冠疫情勞動參與率每人可支配所得隨機森林迴歸樹
外文關鍵詞: COVID-19 pandemic, Labor Force Participation Rate, Per Capital Disposable Income, Random Forest, Regression Tree
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新冠肺炎疫情於西元2020年在全球爆發,過往多篇文獻已經發現疫情對各國勞動市場造成負向衝擊的證據。台灣因西元2021年4月台北市爆發社區群聚感染,自此全台進入了三級警戒長達兩個多月之久,對台灣社會經濟活動造成極大的衝擊。因此本研究想要探討西元2021年疫情爆發對台灣各縣市勞動力市場與平均每人可支配所得的影響。
    研究方法主要根據Cerqua and Letta (2022) 所使用的Machine Learning Control Method (MLCM)以及該論文所採用的變數來進行分析。資料來自台灣各縣市西元 1993年至西元2022年的相關數據,應用了隨機森林和迴歸樹的方法來預測在無疫情影響下的情境。研究結果顯示,相比於疫情沒有爆發的情況下,首先,多數縣市的勞動參與率在疫情時有所下降,但平均每人可支配所得卻意外上升,這一增長或可歸因於通貨膨脹上升、全球對晶圓需求擴張、台灣股市表現優異以及台商回流帶來的投資增加。其次,研究發現疫情對不同行業工業就業人口的影響存在地區上的差異。北部縣市工業就業人口的增加來自於電子零組件業、電腦電子及光學製品業等製造業在疫情期間的就業人數呈現正成長;而中部縣市工業就業人口的減少來自於化學材料及肥料業、食品及飼品業等行業就業人數的負成長;而台南市、高雄市工業就業人口的增加來自於電子零組件製造業、金屬製品製造業等行業就業人數的正成長。而根據迴歸樹分析,不同縣市因產業結構、扶養比等條件的差異,勞動參與率受影響的程度亦存在地區上的差異,因此各縣市政府未來若面對類似新冠肺炎大規模疫情時,或許應可考量各自的產業環境、勞動市場的變化,提出因地制宜的相關政策。

    The COVID-19 pandemic, which broke out globally in 2020. Many studies found that the pandemic caused negative impact on labor market. In Taiwan, a significant outbreak in Taipei in April 2021 led to a nationwide Level 3 alert that lasted over two months, severely disrupting economic activities. This study aims to investigate the impact of the 2021 outbreak on the labor market and per capita disposable income across various counties in Taiwan. Using the Machine Learning Control Method (MLCM) as employed by Cerqua and Letta (2022), this research analyzes county-level data from 1993 to 2022, applying random forest and regression tree methods to predict scenarios without the pandemic's impact. The results show a decline in labor participation rates in most counties during the pandemic, while average per capita disposable income surprisingly increased. This rise may be attributed to factors such as inflation, increased international trade, strong stock market performance, and increased investment due to the return of Taiwanese businesses. Additionally, the study finds regional variations in the impact on industrial employment, influenced by local industrial structures. These findings suggest that future pandemic responses should consider regional economic conditions and labor market characteristics when formulating policies.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目標 3 第三節 研究架構 4 第二章 文獻回顧 5 第一節 新冠疫情對勞動力與消費型態衝擊的相關文獻 5 第二節 機器學習應用在經濟學領域的相關文獻 7 第三章 研究方法 9 第一節 決策樹 9 第二節 迴歸樹 10 第三節 Bagging 11 第四節 隨機森林(Random forest) 12 第五節 資料來源 13 第四章 實證結果 16 第一節 疫情對各縣市勞動參與率的影響 16 第二節 勞動參與率疫情效果-迴歸樹分析 20 第三節 疫情對各縣市平均每人可支配所得的影響 23 第四節 疫情對各縣市工業就業人口的影響 28 第五章 結論 49 參考文獻 51

    Abrell, J., Kosch, M., & Rausch, S. (2022). How effective is carbon pricing?—A machine learning approach to policy evaluation. Journal of Environmental Economics and Management, 112, 102589. https://doi.org/10.1016/j.jeem.2021.102589
    Adams-Prassl, A., Boneva, T., Golin, M., & Rauh, C. (2020). Inequality in the impact of the coronavirus shock: Evidence from real time surveys. Journal of Public Economics, 189, 104245. https://doi.org/10.1016/j.jpubeco.2020.104245
    Baker, S. R., Farrokhnia, R. A., Meyer, S., Pagel, M., & Yannelis, C. (2020). How Does Household Spending Respond to an Epidemic? Consumption during the 2020 COVID-19 Pandemic. Review of Asset Pricing Studies, 10(4), 834-862. https://doi.org/10.1093/rapstu/raaa009
    Benedetti Fasil, C. (2020). EU start-up calculator: impact of COVID-19 on aggregate employment : scenario analysis for Denmark, Estonia, Finland, France, Latvia, Lithuania, Portugal and Sweden. In. Luxembourg: Publications Office of the European Union
    Bick, A. (2020). Real-Time Labor Market Estimates During the 2020 Coronavirus Outbreak. Social Science Research Network Electronic Journal. https://doi.org/10.2139/ssrn.3692425
    Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
    Burlig, F., Knittel, C., Rapson, D., Reguant, M., & Wolfram, C. (2020). Machine Learning from Schools about Energy Efficiency. Journal of the Association of Environmental and Resource Economists, 7(6), 1181-1217. https://doi.org/10.1086/710606
    Cajner, T., Crane, L. D., Decker, R. A., Grigsby, J., Hamins-Puertolas, A., Hurst, E., Kurz, C., & Yildirmaz, A. H. U. (2020). The US Labor Market during the Beginning of the Pandemic Recession. Brookings Papers on Economic Activity, 2020(2), 3-34. https://doi.org/10.1353/eca.2020.0005
    Cerqua, A., Di Stefano, R., Letta, M., & Miccoli, S. (2021). Local mortality estimates during the COVID-19 pandemic in Italy. Joural of Population Economics, 34(4), 1189-1217. https://doi.org/10.1007/s00148-021-00857-y
    Cerqua, A., & Letta, M. (2022). Local inequalities of the COVID-19 crisis. Reginal Science and Urban Economics. https://doi.org/10.1016/j.regsciurbeco.2021.103752
    Coibion, O. (2020). Labor Markets During the COVID-19 Crisis: A Preliminary View. Social Science Research Network Electronic Journal.(2020-41). https://doi.org/10.2139/ssrn.3574736
    Forsythe, E., Kahn, L. B., Lange, F., & Wiczer, D. (2020). Labor demand in the time of COVID-19: Evidence from vacancy postings and UI claims. Journal of Public Economics, 189, 104238-104238. https://doi.org/10.1016/j.jpubeco.2020.104238
    Marco, D. n., Ortiz, V. i., Riccaboni, M., & Serti, F. (2021). Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis. In. St. Louis: Federal Reserve Bank of St Louis.
    Sheridan, A., Andersen, A. L., Hansen, E. T., & Johannesen, N. (2020). Social distancing laws cause only small losses of economic activity during the COVID-19 pandemic in Scandinavia. Proceedings of the National Academy of Sciences - PNAS, 117(34), 20468-20473. https://doi.org/10.1073/pnas.2010068117
    Varian, H. R. (2016). Causal inference in economics and marketing. Proceedings of the National Academy of Sciences, 113(27), 7310-7315. https://doi.org/10.1073/pnas.1510479113
    von Gaudecker, H.-M. (2020). Labour Supply in the Early Stages of the COVID-19 Pandemic: Empirical Evidence on Hours, Home Office, and Expectations. Social Science Research Network Electronic Journal. (13158). https://doi.org/10.2139/ssrn.3579251
    邱子軒. (2022). 新冠疫情下臺商回流投資政策成效之研究 東海大學. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/97mq4c

    無法下載圖示 校內:2029-07-10公開
    校外:2029-07-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE