簡易檢索 / 詳目顯示

研究生: 林俊宏
Lin, Jyun-Hong
論文名稱: 不完美界面下複合桿件之扭轉剛度界限與解析解
Bounds and exact solutions for the torsional rigidity of composite shafts with imperfect interfaces
指導教授: 陳東陽
Chen, Tungyang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 101
中文關鍵詞: 上下限扭轉剛度不完美界面
外文關鍵詞: imperfect interfaces, bounds, torsional rigidity
相關次數: 點閱:189下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要推導任意形狀之桿件中含有塗層纖維內含物,於各種不完美界面下,其扭轉剛度界限;並探討其解析解之值及其存在條件。其中考慮不完美界面中之二大類,一者為低剪力模數之薄層,稱之為LS-type;一者為高剪力模數之薄層,即為HS-type,並以界面剪力模數及厚度所定義之界面參數來表示其界面特性。此外,我們推論當桿件中內含物為多層複合材料時,其扭轉剛度界限值與解析解之存在條件。最後,探討桿件外形對扭轉剛度上下限重合條件之影響,並發現當桿件外形較為複雜時,若假設界面參數為常數,則無法滿足扭轉剛度上下限重合條件;故而進一步假設界面參數沿界面而改變,以調整扭轉剛度界限,使上下限重合,得出解析解。

    Under different kinds of imperfect interfaces, we derive upper and lower bounds for the torsional rigidity of cylindrically shafts with arbitrary cross-section containing a number of coated fibers with circular cross-section by variational principles. At the interfaces between the different materials two kinds of imperfect interfaces are considered for the Saint-Venant torsion problem of composite shafts: one which models a thin interphase of low shear modulus and one which models a thin interphase of high shear modulus. Both types of interface will be characterized by an interface parameter which measures the stiffness of the interface. We find that when an additional constraint in the outer interface is fulfilled, the upper and lower bounds will coincide. Furthermore, we deduce the bounds and exact solution for the torsional rigidity of composite shafts containing a number of multi-coated fibers based on the previous derivation.
    In addition, the interface parameter varying along the interface will be considered to fulfill the conditions of the existence of the exact torsional rigidity for the different shapes of the shaft.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 IX 第一章 緒論 1 1.1 理論背景與文獻回顧 1 1.2 論文內容簡介 3 第二章 基本扭轉架構及各種不完美界面型式介紹 5 2.1 基本扭轉公式介紹 5 2.2 不完美界面之邊界條件與扭轉剛度界限公式 7 2.2.1 不完美界面之邊界條件: 7 2.2.2 扭轉剛度上限: 9 2.2.3 扭轉剛度下限: 10 2.3 各種不完美界面型式介紹 10 2.3.1 複合桿件之假設 10 2.3.2 不完美界面類型 11 第三章 複合桿件扭轉剛度之下限 16 3.1 假設翹曲函數與應力函數 16 3.2 扭轉剛度下限之推導流程 18 3.2.1 應力函數之推導流程 18 3.2.2 扭轉剛度下限之基本推導 23 3.3 I-type之扭轉剛度下限 26 3.3.1 I-type邊界條件 26 3.3.2 求解I-type之應力函數 26 3.3.3 I-type界面扭轉剛度下限 28 3.4 II-type之扭轉剛度下限 31 3.4.1 II-type邊界條件 31 3.4.2 求解II-type之應力函數 31 3.4.3 II-type界面扭轉剛度下限 33 3.5 III-type之扭轉剛度下限 35 3.5.1 III-type邊界條件 35 3.5.2 求解III-type之應力函數 36 3.5.3 III-type界面扭轉剛度下限 37 3.6 IV-type之扭轉剛度下限 40 3.6.1 IV-type邊界條件 40 3.6.2 求解IV-type之應力函數 40 3.6.3 IV-type界面扭轉剛度下限 42 第四章 複合桿件扭轉剛度之上限 45 4.1 扭轉剛度上限之推導流程 45 4.1.1 翹曲函數之推導流程 45 4.1.2 扭轉剛度上限之基本推導 48 4.2 I-type界面之扭轉剛度上限 52 4.2.1 由邊界條件求解I-type界面翹曲函數 53 4.2.2 I-type界面扭轉剛度上限 54 4.3 II-type界面之扭轉剛度上限 56 4.3.1 由邊界條件求解II-type界面翹曲函數 56 4.3.2 II-type界面扭轉剛度上限 57 4.4 III-type之扭轉剛度上限 59 4.4.1 由邊界條件求解III-type界面翹曲函數 60 4.4.2 III-type界面扭轉剛度上限 61 4.5 IV-type之扭轉剛度上限 63 4.5.1 由邊界條件求解IV-type界面翹曲函數 63 4.5.2 IV-type界面扭轉剛度上限 64 第五章 界面參數非常數時複合桿件扭轉剛度上下限重合條件與解析解 66 5.1 界面參數之基本假設 66 5.2 LS-type界面扭轉剛度之上下限重合條件與解析解 68 5.2.1 推導LS-type界面之扭轉剛度上下限重合條件 68 5.2.2 LS-type扭轉剛度解析解 70 5.2.3 基底形狀對LS-type界面上下限重合條件之影響 71 5.3 HS-type界面扭轉剛度之上下限重合條件與解析解 77 5.3.1 推導HS-type界面之扭轉剛度上下限重合條件 78 5.3.2 HS-type扭轉剛度解析解 80 5.3.3 基底形狀對HS-type界面上下限重合條件之影響 81 第六章 結論與未來展望 83 參考文獻 88 附錄A 已知形狀桿件之扭轉剛度 90 附錄B 桿件翹曲函數之截面形狀係數介紹 91 附錄D 不同基底形狀下之扭轉剛度上下限重合條件 95 D.1 基底形狀對I-type界面上下限重合條件之影響 95 D.2 基底形狀對II-type界面上下限重合條件之影響 97 D.3 基底形狀對III-type界面上下限重合條件之影響 98 D.4 基底形狀對IV-type界面上下限重合條件之影響 99 自述 101

    Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Solids 54, pp.708-734, 2006.

    Benveniste, Y. & Chen, T., On the Saint-Venant torsion of composite bars with imperfect interfaces, Proc. R. Soc. Lond. A 457, pp.231-255, 2001.

    Bovik, P., On the modeling of thin interface layers in elastic and acoustic scattering problems, Quart. J. Mech. Appl. Math. 47, pp.17-40, 1994.

    Chen, T., Thermal conduction of a circular inclusion with variable interface parameter, Int. J. Solids Struct. 38, pp.3081-3097, 2001.

    Chen, T., Benveniste, Y. & Chuang, P.C., Exact solutions in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages, Proc. R. Soc. Lond. A 458, pp.1719-1759, 2002.

    Chen, T., An exactly solvable microgeometry in torsion: assemblage of multicoated cylinders, Proc. R. Soc. Lond. A 460, pp.1981-1993, 2004.

    Chen, T. & Wei, C.J., Saint-Venant torsion of anisotropic shafts: theoretical frameworks, extremal bounds and affine transformations, Q. JI Mech. Appl. Math. 58 (2), pp.267-287, 2005.

    Chen, T. & Lipton, R., Bounds for the torsional rigidity of shafts with arbitrary cross-sections containing cylindrically orthotropic fibers or coated fibers, Proc. R. Soc. A. 463, pp.3291-3309, 2007.

    Chen, T. & Chan, I-Tung, Rigorous bounds on the torsional rigidity of composite shafts with imperfect interfaces, J. Elasticity. 92, pp.91-108, 2008.

    Lipton, R. & Chen, T., Bounds and extremal configurations for the torsional rigidity of coated fiber reinforced shafts, SIAM J. Appl. Math. 65, no.1, pp.299-315, 2004.

    Lipton, R., Optimal configurations for maximum torsional rigidity, Arch. Ration. Mech. Analysis 144, pp.79-106, 1998.

    Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Gronongen, 1953.

    Payne, L.E. & Weinberger, H.F., Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2, 210-216, 1961.

    Polya, G., Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math. 6, pp.267-277, 1948.

    Polya, G. & Weinstein, A., On the torsional rigidity of multiply connected cross sections, Ann. Math. 52, pp.155-163, 1950.

    Sadd, M.H., Elasticity: Theory, Applications, and Numerics, Elsevier Academic Press, 2005.

    Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

    Timoshenko, S.P. & Gooder, J.N., Theory of Elasticity, McGraw-Hill, New York, 1970.

    Tolstov, G.P., Fourier Series, Dover, New York, 1976; R.A. Silverman, Trans., original work in Russian.

    詹益東, 不完美界面下複合桿件的扭轉剛度上下限, 國立成功大學土木工程所碩士論文, 2007.

    下載圖示 校內:立即公開
    校外:2008-08-06公開
    QR CODE