簡易檢索 / 詳目顯示

研究生: 凃皓雲
Tu, Hao-Yun
論文名稱: 利用射頻磁控濺鍍法製備鐵酸鉍p-n接面以及光伏特和光催化性質之研究
Photovoltaic and Photocatalytic Properties of Bismuth Ferrite p-n junction grown by RF Magnetron Sputter Deposition
指導教授: 齊孝定
Qi, XiaoDing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 142
中文關鍵詞: 射頻磁控濺鍍薄膜鐵酸鉍異質接面光催化光降解
外文關鍵詞: BFO, p-n junction, carrier transport layer, photodegradation, photovoltaic
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法,在不同氣氛下濺鍍出n型及p型鐵酸鉍,並將兩種型態堆疊形成多層膜p-n異質接面進行後續光伏特以及光催化性質量測。在本實驗中選用亞甲基藍作為示範汙染物,驗證p-n 異質接面在光降解方面上的實際效果。實驗結果利用XRD證明試片為純相鐵酸鉍,並藉由SEM看出表面為緻密的結構表現;透過XPS及Mott-Schottky瞭解n型及p型鐵酸鉍的差異,並利用UV-vis、UPS技術來精準畫出能帶的位置,了解載子在不同薄膜層之間的傳輸機制。
    根據實驗結果,n型及p型鐵酸鉍皆存在氧空缺,而p型的氧空缺數量較多。其中n型鐵酸鉍的載子源自於電中性的氧空缺,使其可以作為電子的供給;p型的載子源自於帶正電的氧空缺,使其可以接收電子。兩者的能隙也略有不同,n型的能隙為2.57 eV,略高於p型的2.5 eV。進一步將兩者堆疊為p-n junction之後,光降解效率在兩個小時之後來到95%以上,有顯著的提升。在透過Mn、Mg摻雜之後,能隙進一步縮小至1.83 eV,並延伸異質接面的特性,將摻雜之鐵酸鉍濺鍍在載子傳導層WO3以及TiO2上協助載子分離,在光伏特性質上提升開路電壓以及短路電流。

    BiFeO3 (BFO) thin films were deposited on LaNiO3 (LNO) buffered glass substrates by RF magnetron sputtering under different conditions to obtain either n or p type films. A BFO p-n junction could therefore be fabricated to enhance photovoltaic and photocatalytic properties. Both types of BFO films contained oxygen vacancies with p-type films having a higher number of the vacancies. The carriers in p-type BFO were correlated to the positively charged oxygen vacancies that have no trapped electrons, whereas the carriers in n-type BFO were correlated to neutral oxygen vacancies that have two trapped electrons. BFO were then co-doped by Mn and Mg (BFMMO) to reduce band gap, which was measured to be 1.83 eV, much lower than that of undoped BFO (~2.5 eV). The construction of bilayer BFO p-n junction led to great improvement in photodegradation of methylene blue (MB), with over 95% MB being degraded in 120 minutes. A better performance was achieved with the p-n junction constructed with BFMMO, which degraded over 95% MB in just 90 minutes. WO3 and TiO2 were deposited on LNO electrode as carrier transport layer (CTL). The band alignments between BFMMO and WO3 or TiO2 were determined by ultraviolet photoelectron spectroscopy, which revealed that only WO3 may act as an effective CTL. Indeed, BFMMO/WO3/LNO multilayer showed an improved photovoltaic output under light illumination, and its open-circuit voltage and close-circuit current were switchable by the electric polling directions.

    摘要 I Extended Abstract II 致謝 XI 目錄 XIII 圖目錄 XIX 表目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 4 2.1 光降解 (Photodegradation) 4 2.1.1 光降解原理以及機制 4 2.1.2 光降解效率影響因素 6 2.1.3 異質接面之光降解材料 9 2.1.4 光降解材料種類 12 2.1.5 光降解動力學模型 14 2.2 光伏特 (Photovoltaic) 16 2.2.1 鐵電光伏的可能機制 16 2.2.2 蕭特基能障 17 2.2.3 鐵電電域與域壁 18 2.2.4 退極化場效應 19 2.3 實驗材料 20 2.3.1 鐵酸鉍 (BiFeO3) 20 2.3.1.1 晶體結構 20 2.3.1.2 BiFeO3相圖 22 2.3.1.3 鐵電性質 23 2.3.1.4 介電性質及介電崩潰 25 2.3.1.5 鐵酸鉍之應用 28 2.3.2 鎳酸鑭 (LaNiO3) 30 2.3.2.1 晶體結構 30 2.3.2.2 LaNiO3相圖 31 2.3.2.3 理論回顧 32 2.3.3 氧化鎢 (WO3) 33 2.3.4 二氧化鈦 (TiO2) 33 2.3.5 亞甲基藍 (Methylene Blue) 33 2.4 濺鍍原理 36 2.4.1 DC直流濺鍍 (DC sputtering deposition) 38 2.4.2 RF射頻濺鍍 (RF sputtering deposition) 38 2.4.3 磁控濺鍍 (Magnetron sputtering deposition) 39 2.5 薄膜成核、成長原理 40 2.5.1 不同薄膜生長模式 42 2.5.2 薄膜微觀結構 (Microstructure) 43 第三章 研究方法 45 3.1 實驗流程 45 3.2 實驗材料 46 3.3 實驗方法 47 3.3.1 氧化物靶材製作 47 3.3.2 薄膜製備 49 3.3.2.1 濺鍍系統 49 3.3.2.2 基板前處理 51 3.3.2.3 濺鍍製程參數及薄膜退火 52 3.3.3 光催化實驗 53 3.4 分析儀器及儀器原理 54 3.4.1 X光繞射儀 (X-Ray Diffractometer, XRD) 54 3.4.2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 56 3.4.3 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 以及紫外光電子能譜儀 (Ultraviolet Photoelectron Spectroscopy, UPS) 58 3.4.4 紫外線-可見光光譜 (Ultraviolet-visible spectroscopy, UV-vis) 61 3.4.5 太陽光模擬器 (Solar Simulator) 64 3.4.6 電化學工作站 (Electrochemical Workstation) 65 第四章 結果與討論 66 4.1 n型及p型BiFeO3 66 4.1.1 XRD晶體結構及SEM表面形貌分析 66 4.1.2 XPS圖譜分析 68 4.1.3 能隙 (Band gap) 量測及分析 70 4.1.4 電化學量測分析 71 4.1.4.1 Mott-Schottky & Flat Band Potential 71 4.1.4.2 光電流量測 73 4.1.5 UPS及能帶結構分析 74 4.1.6 光降解實驗 76 4.1.7 光伏特實驗 78 4.1.8 阻抗分析 (Impedance) 80 4.2 p-n異質接面BFO (p-n Heterojunction BFO) 81 4.2.1 XRD晶體結構及SEM表面形貌分析 81 4.2.2 光降解實驗 83 4.2.3 光伏特實驗 86 4.2.4 電化學量測分析 88 4.2.4.1 Mott-Schottky & Flat Band Potential Shifting 88 4.2.4.2 光電流量測 90 4.3 p-n異質接面BiFe0.9Mn0.05Mg0.05O3 (BFMMO) 91 4.3.1 XRD晶體結構及SEM表面形貌分析 91 4.3.2 能隙 (Band gap) 量測及分析 93 4.3.3 電化學量測分析 94 4.3.3.1 Mott-Schottky & Flat-Band Potential 94 4.3.3.2 光電流量測 96 4.3.4 光降解實驗 97 4.3.5 光伏特實驗 99 4.4 BFMMO/MOX異質接面 (M=W、Ti) 101 4.4.1 XRD晶體結構及表面形貌分析 101 4.4.2 UPS及能帶結構分析 103 4.4.3 光降解實驗 106 4.4.4 光伏特實驗 108 第五章 結論 110 參考文獻 112

    1. Rani, B., A.K. Nayak, and N.K. Sahu, Fundamentals principle of photocatalysis, in Nanostructured Materials for Visible Light Photocatalysis. 2022, Elsevier. p. 1-22.
    2. Park, S.J., et al., Current status, research gaps, and future scope for nanomaterials toward visible light photocatalysis, in Nanostructured Materials for Visible Light Photocatalysis. 2022, Elsevier. p. 569-608.
    3. Zoski, C.G., Handbook of electrochemistry. 2006: Elsevier.
    4. Amano, F., et al., Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure. Langmuir, 2010. 26(10): p. 7174-7180.
    5. Bard, A.J., Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry, 1979. 10(1): p. 59-75.
    6. Yu, J., et al., Enhanced photocatalytic performance of direct Z-scheme gC 3 N 4–TiO 2 photocatalysts for the decomposition of formaldehyde in air. Physical Chemistry Chemical Physics, 2013. 15(39): p. 16883-16890.
    7. Xu, Q., et al., S-scheme heterojunction photocatalyst. Chem, 2020. 6(7): p. 1543-1559.
    8. Chen, X., et al., Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. Materials, 2022. 15(11): p. 3786.
    9. Ali, S., et al., Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: A review. Inorganic Chemistry Communications, 2022: p. 110011.
    10. Dolla, T.H., et al., Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. Journal of Electroanalytical Chemistry, 2023. 928: p. 117049.
    11. Zhu, D., et al., The development of balanced heterojunction photocatalysts. Cell Reports Physical Science, 2022. 3(10).
    12. Ali, S. and T. Ahmad, Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts. Materials Today Chemistry, 2023. 29: p. 101387.
    13. Li, X., et al., Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science & Engineering, 2018. 12: p. 1-32.
    14. Becker, C., From Langmuir to Ertl: the “Nobel” history of the surface science approach to heterogeneous catalysis. encyclopedia of interfacial chemistry, 2018: p. 99-106.
    15. van de Loo, B., et al., Advanced front-surface passivation schemes for industrial n-type silicon solar cells. Photovolt. Int, 2014. 24: p. 43-50.
    16. Choi, T., et al., Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009. 324(5923): p. 63-66.
    17. Yang, S., et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nature nanotechnology, 2010. 5(2): p. 143-147.
    18. Chen, B., et al., Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors. Nanotechnology, 2011. 22(19): p. 195201.
    19. Shimada, T., et al., Multiferroic nature of intrinsic point defects in BiFeO 3: A hybrid Hartree-Fock density functional study. Physical Review B, 2016. 93(17): p. 174107.
    20. Lennard-Jones, J., Processes of adsorption and diffusion on solid surfaces. Transactions of the Faraday Society, 1932. 28: p. 333-359.
    21. Kubel, F. and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B: Structural Science, 1990. 46(6): p. 698-702.
    22. Einarsrud, M.-A. and T. Grande, 1D oxide nanostructures from chemical solutions. Chemical Society Reviews, 2014. 43(7): p. 2187-2199.
    23. Selbach, S.M., M.-A. Einarsrud, and T. Grande, On the thermodynamic stability of BiFeO3. Chemistry of Materials, 2009. 21(1): p. 169-173.
    24. Lu, S.Z. and X. Qi, Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol–gel method. Journal of the American Ceramic Society, 2014. 97(7): p. 2185-2194.
    25. Tong, T., et al., Preparation and gas sensing characteristics of BiFeO3 crystallites. Materials Letters, 2017. 197: p. 160-162.
    26. Gutiérrez‐Lázaro, C., et al., Solution Synthesis of BiFeO 3 Thin Films onto Silicon Substrates with Ferroelectric, Magnetic, and Optical Functionalities. Journal of the American Ceramic Society, 2013. 96(10): p. 3061-3069.
    27. Bernardo, M., Synthesis, microstructure and properties of BiFeO. Boletin de la Sociedad Española de, 2014: p. 1.
    28. Haertling, G.H., Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 1999. 82(4): p. 797-818.
    29. Jin, L., F. Li, and S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. Journal of the American Ceramic Society, 2014. 97(1): p. 1-27.
    30. Cai, B., Manipulating the structural and electronic properties of epitaxial NaNbO3 films via strain and stoichiometry. 2016, Universität zu Köln.
    31. Laurent, C., C. Mayoux, and A. Sergent, Electrical breakdown due to discharges in different types of insulation. IEEE Transactions on Electrical Insulation, 1981(1): p. 52-58.
    32. Jang, H.M., H. Han, and J.-H. Lee, Spin-coupling-induced improper polarizations and latent magnetization in multiferroic BiFeO3. SciEntific REPORtS, 2018. 8(1): p. 405.
    33. Zinkevich, M. and F. Aldinger, Thermodynamic analysis of the ternary La–Ni–O system. Journal of alloys and compounds, 2004. 375(1-2): p. 147-161.
    34. Torrance, J., et al., Systematic study of insulator-metal transitions in perovskites R NiO 3 (R= Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Physical Review B, 1992. 45(14): p. 8209.
    35. Sanchez, R., et al., Metal-insulator transition in oxygen-deficient LaNiO 3− x perovskites. Physical review B, 1996. 54(23): p. 16574.
    36. Khan, I., et al., Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water, 2022. 14(2): p. 242.
    37. Jack Clifton, I. and J.B. Leikin, Methylene blue. American journal of therapeutics, 2003. 10(4): p. 289-291.
    38. Houas, A., et al., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 2001. 31(2): p. 145-157.
    39. Talab, A., et al., Characterization of a New DC-Glow Discharge Plasma Set-Up to Enhance the Electronic Circuits Performance. Journal of Modern Physics, 2020. 11(7): p. 1044-1057.
    40. Huang, H., et al., Effect of Growth Temperature on Crystallization of Ge1− xSnx Films by Magnetron Sputtering. Crystals, 2022. 12(12): p. 1810.
    41. Ohring, M., Materials Science of Thin Films: Depositon and Structure. 2001: Elsevier.
    42. Movchan, B. and A. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969.
    43. Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
    44. Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 3059-3065.
    45. Kaiser, N., Review of the fundamentals of thin-film growth. Applied optics, 2002. 41(16): p. 3053-3060.
    46. Gumustas, M., et al., Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems, in Multifunctional systems for combined delivery, biosensing and diagnostics. 2017, Elsevier. p. 67-108.
    47. Marturi, N., Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. 2013, Université de Franche-Comté.
    48. L'H, Y. and L. Mireles, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF SIMS), in Characterization of polymeric biomaterials. 2017, Elsevier. p. 83-97.
    49. Rocha, F.S., et al., Experimental methods in chemical engineering: Ultraviolet visible spectroscopy—UV‐Vis. The Canadian Journal of Chemical Engineering, 2018. 96(12): p. 2512-2517.
    50. Wang, X., et al., Effects specific surface area and oxygen vacancy on the photocatalytic properties of mesoporous F doped SnO 2 nanoparticles prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2019. 30: p. 16110-16123.

    無法下載圖示 校內:2029-06-20公開
    校外:2029-06-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE