| 研究生: |
施威任 Shih, Wei-Jen |
|---|---|
| 論文名稱: |
奈米級氫氧基磷灰石之合成及燒結 The Synthesis and Sintering of Nano-sized Hydroxyapatite |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 水解合成 、奈米級 、氫氧基磷灰石 、低溫燒結 |
| 外文關鍵詞: | hydroxyapatite (HA), nano-sized, hydrolysis, low temperature sintering |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氧基磷灰石(Ca10(PO4)6(OH)2,HA)是接近人體骨骼成分的磷酸鈣鹽,因此常用於替代人體硬組織,本研究以二水磷酸氫鈣(CaHPO4‧2H2O,DCPD)為原料,於氫氧化鈉水溶液(NaOH(aq))中水解合成HA,改變製程中各項參數將其最佳化,並達成降低燒結溫度的目標。獲得以2.5 M NaOH(aq)中在75oC水解合成1 h為最佳化條件,生成奈米低結晶化HA粉末,寬50 nm,長100 nm,顯現{0 0 2n}面的異向性結晶現象。添加陽離子型介面分散劑十六烷基三甲基溴化銨(CTAB)參與反應時,在110-3 M濃度形成微胞,阻止了晶粒成長,可將HA晶粒大小降至20 nm寬,50 nm長。而當CTAB的添加與酒精水溶劑兩個條件皆參與反應而影響HA粉末生成時,會產生多孔性HA(孔徑約5 nm)。
在水解合成過程中,添加CaCO3以改變鈣磷比(Ca/P ratio=1.0~1.8),合成之HA粉末呈現的{0 0 2n}異向性結晶現象,在高於Ca/P=1.5之後會消失,並形成寬約200 nm而長約400 nm的大顆粒。取Ca/P=1.0與1.5合成的HA粉末與Merck商用HA粉末進行萃取液體外細胞存活率研究,生物相容性為Ca/P=1.5> Ca/P=1.0>Merck,並可在短時間內促進細胞存活率。
將不同Ca/P值(1.0~1.8)水解合成之HA粉末壓胚後,在800oC進行4 h燒結,其{0 0 2n}之異向性結晶現象在Ca/P>1.5後消失,且密度趨於穩定(約2.8 g/cm3),此乃因rhenanite相(NaCaPO4)相隨Ca/P比增加而增加,並可在晶界上觀察出非晶相的形成。Ca/P=1.5合成粉末之高溫特性可分為三階段,第一為25oC到500oC的寬化圖階段,是因升溫而轉變為缺鈣型HA以及穩定型HA的階段;第二為600oC到1250oC之間的結晶化HA階段,CaO相在升溫至700oC時出現,800oC時於晶界上出現非晶NaCaPO4相;第三階段為高溫相分解階段,在1250oC到1500oC之間逐漸轉變為α-三鈣磷酸鹽與四鈣磷酸鹽,顯示CaCO3的添加以及水解合成製程皆有助於HA高溫相的穩定化。相較於Ca/P=1.0時合成粉末以及Merck商用HA粉末,Ca/P=1.5所合成粉末之密度與硬度最高值皆較低,但其特質在於800oC即可進行燒結,並已有相當之機械性質。
將Ca/P=1.5合成之HA粉末經800oC燒結4 h的燒結體,在37oC浸漬於生理食鹽水中進行長期浸漬測試,2 週後發現隨浸漬時間而增加的焦磷酸鈣相(CPP)結晶,並因CPP的形成使燒結體表面硬度下降。另於體外以皮膜纖維母細胞3T3在37oC進行細胞培養實驗,4 d後發現周圍細胞的分裂延展以及析出的CPP結晶,顯示添加碳酸鈣所水解合成之HA粉末可在800oC的低溫燒結並有良好的生物相容性。
Hydroxyapatite (Ca10(PO4)6(OH)2, HA) has long been recognized as an important bone substitute material because of its chemical and biological similarity to the mineral phase of human bone. Using dicalcium phosphate dihydrate (CaHPO4‧2H2O, DCPD) as starting material, this study intends to optimize the synthesis parameters of nano-sized HA powders by a hydrolysis method and investigate their sintering behavior. The optimized synthesized HA powder at 75oC in 2.5M NaOH(aq) for 1h is composed of tiny crystals with a size of about 50.0 nm in thickness and 100.0 nm in length with a well one dimension alignment on the {0 0 2n} preferred orientation.
When the solvent of water is mixed with alcohol, the hydrolysis reaction becomes more intense to smash the HA aggregates into small particles. On the other hand, the HA aggregates synthesized with 110-3 M cetyltrimethyl- ammonium bromide (CTAB) as a surfactant become thinner to a size of 5-20 nm in width and 50 nm in length because of the formation of micells. The interaction between alcohol solution and CTAB induces the nano-porous HA (pore size ~ 5nm) at 50% alcohol and 110-3 M CTAB with surface area of 149.22 m2/g.
The HA powders are synthesized with Ca/P ratios from 1.0 to 1.8 by adding CaCO3 in the hydrolysis process, and the well one dimension alignment on the {0 0 2n} preferred orientation without adding CaCO3 is inhibited above Ca/P=1.5. The thickness and length of the crystals increase from 50.0 nm to 200 nm, and 100 nm to 500 nm, respectively, with the Ca/P ratio increasing from 1.0 to 1.8. The relative biocompatibility is HACa/P=1.5>HACa/P=1.0>HAMerck according to the in-vitro viability of 3T3 cells with powder immersion test.
The density of HA pellets sintered at 800oC for 4h increases with the Ca/P ratio increase of the source powder rapidly until Ca/P=1.5 and becomes stable (about 2.8 g/cm3) with the appearance of the amorphous phase identified as NaCaPO4 at the grain boundary. The thermal behavior of the HA powder with a Ca/P=1.5 between 25oC and 1500oC is divided into three stages: First, the transformation of amorphous calcium phosphate to calcium deficient HA and stoichiometric HA between 25 to 500oC. Second, the well crystallized HA stage between 600 to 1250oC with the minor CaO phase appears at 700oC and the NaCaPO4 phase at 800oC. In the last stage, HA steadily transforms to the -tricalcium phosphate (-TCP) and tetra-calcium phosphate (TTCP) between 1250 and 1500oC, revealing the stabilization of HA at high temperature after CaCO3 adding in hydrolysis process. Although the mechanical properties of sintered pellets with Ca/P=1.5 are lower than Ca/P=1.0 and commercial available HA powders from Merck, the sintering temperature is reduced to 800oC.
The HA pellets of Ca/P=1.5 sintered at 800oC for 4 h are immersed in saline at 37oC for various durations as a long term immersion test. Calcium pyro- phosphate (CPP) forms after two week immersion and increases with time until 28 deeks which induces the hardness decrease of pellet surface. In the 3T3 cell culturing test at 37oC, the living cells with CPP precipitates after 4 d are observed revealing the great biocompatibility of low temperature sintered HA pellets.
[1] 闕山璋, “骨科植入物生醫材料及器材”, 科儀新知, 63, 13(1), pp.64-71, 1991.
[2] S.D. Bruck, “Properties of biomaterials in the physiological environment”, CRC Press. Inc., Boca Raton, Florida, p.1 , 1980.
[3] L.L. Hench, “Bioceramics: from concept to clinic”, J. Am. Ceram. Soc. 74(7), 1487-1510, 1991.
[4] K. de Groot, “Bioceramics of calcium phosphate”, CRC Press. Inc., Boca Raton, Florida, pp.1-32, pp.79-97, 1983.
[5] J. B. Park, R.S. Lakes, “Biomaterials: An introduction”, 2nd ed., Plenum Press, New York, pp.1-3, p.109, 1992.
[6] S.F. Hulbert, J.C. Bokros, L.L. Hench, J.W. Wilson, G. Heimke, “Ceramicsin Clinical Applications, Past, Present And Future”, Ceramics in Clinical Application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V., pp.3-27, 1987.
[7] L.L Hench, “Bioceramics”, J. Am. Ceram. Soc., 81(7), 1705-1728, 1998.
[8] J.M. Gomez-Vega, E. Saiz, A.P. Tomsia, G.W. Marshal, S.J. Marshall, “Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing”, Biomaterials, 21(2), 105-111, 2000.
[9] M. Jarcho, ”Calcium Phosphate Ceramics as Hard Tissue Prosthetics.”, Clin. Orthop., 157, 259-278, 1981.
[10] P. Ducheyne, L.L. Hench, A. Kagan, M. Martens, A. Bursens, J.C. Mulier, “Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants”, J. Biomed. Mater. Res., 14(3), 225-237, 1980.
[11] M.Y. Shareef, P.F. Messer, R. Van Noort, “Fabrication characterization and fracture study of a machinable hydroxyapatite ceramic”, Biomaterials 14(1), 69-75, 1993.
[12] A.I. Villacampa, J.M. Garcia-Ruiz, “Synthesis of a new hydroxyapatite-silica composite material”, J. Crystal Growth, 211(1-4), 111-115, 2000.
[13] F. Chen, Z.C. Wang, C.J. Lin, “Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano- composite for use in biomedical materials.“, Mater. Lett., 57(4), 858-861, 2002.
[14] K. Ohta, M. Kikuchi, J. Tanaka, H. Eda, ”Synthesis of c Axes Oriented Hydroxyapatite Aggregate”, Chem. Lett., 894-895, 2002.
[15] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, “Hydroxyapatite synthesized by a simplified hydrothermal method.”, Ceram. Int., 23(1), 19-25, 1997.
[16] S.K. Yen, C.M. Lin, “Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium”, Mater. Chem. Phys., 77(1), 70-76, 2003.
[17] S. Ban, J. Hasegawa, “Morphological regulation and crystal growth of hydrothermal-electrochemically deposited apatite”, Biomaterials, 23(14), 2965-2972, 2002.
[18] K. Hwang, Y. Lim, “Chemical and structural changes of hydroxyapatite films by using a sol-gel method”, Surf. Coating. Tech. 115(2-3), 172-175, 1999.
[19] D.B. Haddow, P.F. James, R. Van Noort, “Characterization of sol-gel surfaces for biomedical applications”, J. Mater. Sci.: Mater. Med., 7(5), 255-260, 1996.
[20] C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, “Hydroxyapatite powders and thin films prepared by a sol-gel technique”, Thin Solid Films, 326(1-2), 227-232, 1998.
[21] W.J. Shih, Y.H. Chen, S.H. Wang, W.L. Li, M.H. Hon, M.C. Wang, “Effect of NaOH(aq) treatment on the phase transformation and morphology of calcium phosphate deposited by an electrolytic method”, J. Crystal Growth, 285(4), 633-641, 2005.
[22] S.H. Wang, W.J. Shih, W.L. Li, M.H. Hon, M.C. Wang, “Morphology of calcium phosphate coatings deposited on a Ti–6Al–4V substrate by an electrolytic method under 80Torr”, J. Euro. Ceram. Soc., 25(14), 3287-3292, 2005.
[23] W.J. Shih, Y.H. Chen, S.H. Wang, W.L. Li, M.H. Hon, M.C. Wang, “The phase transition of calcium phosphate coatings deposited on a Ti-6Al-4V substrate by an electrolytic method”, J. Alloys. Comp., (2007) (in press).
[24] L. L. Hench, E. C. Ethridge, ”Biomaterial, an interfacial approach”, Academic Press. Inc., New York, p.72, 1982.
[25] K.T. Oh, Y.S. Park, “Plasma-sprayed coating of hydroxyapatite on super austenitic stainless steels.”, Surf. Coat. Tech., 110(1-2), 4-12, 1998.
[26] K. Hwang, J. Song, B. Kang, and Y. Park, “Sol-gel derived hydroxyapatite films on alumina substrates.” Surf. Coat. Tech., 123(2-3), 252-255, 2000.
[27] X. Zheng, M. Huang, and C. Ding, “Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings.”, Biomaterials, 21(8), 841-849, 2000.
[28] K. de Groot, “Medical applications of calcium phosphate bioceramics.”, 日本陶瓷協會學術論文誌, 99, 943-953, 1991.
[29] J.S. Sun, H.C. Liu, Walter H.S Chang, J. Li, F.H. Lin, H.C. Tai, “The influence of hydroxyapatite particle size on bone cell activities: an in vitro study”, J. Biomed. Mater. Res., 39(3), 390-397, 1998.
[30] M. M. Belmonte, A. de Benedittis, R.A.A. Muzzarelli, M.G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini, R. Giardino, “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients”, J. Mater. Sci.: Mater. Med., 9(9), 485-492, 1998.
[31] A. Lopez-Macipe, J. Homez-Morales, R. Rodriguez-Clemente, “Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating”, Adv. Mater., 10(1), 49-53, 1998.
[32] J.D. Bronzino, “The Biomedical Engineering Handbook”, CRC Press, Florida, p.562, 1995.
[33] S.F. Hulbert, J.C. Bokros, L.L. Hench, J.W. Wilson, G. Heimke, “Ceramics in Clinical Applications, Past, Present And Future”, Ceramics in Clinical Application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V., pp.3-27, 1987.
[34] M.J. Root, “Inhibition of the amorphous calcium phosphate transformation reaction by polyphosphonates and metal-ions”, Calcified. Tissue Int., 47(2), 112-116, 1990.
[35] Y. Okamoto, S. Hidaka, “Studies on calcium-phosphate precipitation: Effects of metal-ions used in dental materials”, J. Biomed. Mater. Res., 28(12), 1403-1410, 1994.
[36] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Rovri, “Inhibiting effect of Zinc on hydroxyapatite crystallization”, J. Inorg. Biochem., 58(1), 49-58, 1995.
[37] N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, “Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face”, J. Phys. Chem. B, 104(17), 4189-4194, 2000.
[38] 王寶琪, “電漿熔射氫氧基磷灰石披覆於鈦鋁釩合金基材”, 國立成功大學材料及工程研究所博士論文, pp.28-30, 1994.
[39] F.C.M. Driessens, “Bioceramic of Calcium Phosphate”, Edited by K. de Groot, CRC Press Inc., Boca Raton, Florida, , pp.1-32, 1983.
[40] H. Tagai, H. Aoki, “Mechanical Properties of Biomaterials”, Edited by G.W. Hastins and J. Upton, John Wiley & Sons Press, p.477 , 1980
[41] L. Bernard, M. Freche, J.L. Lacout, and B. Biscans, “Preparation of hydroxyapatite by neutralization at low temperature-influence of purity of the raw material”, Powder Technology 103(1), 19-25, 1999.
[42] C. Liu, Y. Huang, W. Shen, J. Cui, “Kinetics of hydroxyapatite precipitation at pH 10 to 11.”, Biomaterials 22(4), 301-306, 2001.
[43] P. Luo, T,G, Nieh, “Synthesis of ultrafine hydroxyapatite particles by a spray dry method.”, Mater. Sci. Eng.: C-Biomim., 3(2), 75-78, 1995
[44] H.E. Lundager Madsen, F. Christensson, L.E. Polyak, E.I. Suvorova, M.O. Kliya, and A.A. Chernov, ”Calcium phosphate crystallization under terrestrial and microgravity conditions.” , J. Crystal Growth 152(3), 191-202, 1995.
[45] J. Cihlar, M. Trunec, ”Injection moulded hydroxyapatite ceramics,” Biomaterials, 17(19), 1905-1911, 1996.
[46] Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, and P.W. Brown, ”Ultrasonically accelerated synthesis of hydroxyapatite.”, J. Mater. Res., 7(8), 2294-2298, 1992.
[47] X. Sun, C. Ma, Y. Wang, H. Li, “Effects of polarization of calcium phosphate.”, Mater. Lett., 47(4-5), 267-270, 2001.
[48] P. Calvert, S. Mann, “The negative side of crystal growth”, Nature, 386(6621), 127-129, 1997.
[49] H.B. Lu, C.L. Ma, H. Cui, L.F. Zhou, R.Z. Wang, F.Z. Cui, “controlled crystallization of calcium phosphate under stearic acid monolayers.”, J. Crystal Growth, 155(1-2), 120-125, 1995.
[50] S.H. Rhee, J. Tanaka, “Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid”, Biomaterials, 20(22), 2155-2160, 1999.
[51] E. Bouyer, F. Gitzhofer, M. I. Boulos, “Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma,” IEEE Transactions on Plasma Science, 25(5), 1066-1072, 1997.
[52] E.M. Rivera, M. Araiza, W. Brostow, V.M. Castaòo, J.R. Díaz-Estrada. R. Hernández, and J. Rogelio Rodríguez, “Synthesis of hydroxyapatite from eggshells.”, Mate. Lett., 41(3), 128-134, 1999.
[53] G.K. Lim, J. Wang, S.C. Ng, and L.M. Gan, “Processing of fine hydroxyapatite powders via an inverse microemulsion route.”, Mater. Lett., 28(4-6), 431-436, 1996.
[54] L. Pach, S. Komarneni, “Precipitation of hydroxyapatite film under dynamic conditions.”, Mate. Res. Bull., 34(12-13), 1859-1865, 1999.
[55] P. Luo, T.G. Nieh, ”Preparing hydroxyapatite powders with controlled morphology,” Biomaterials, 17(20), 1959-1964, 1996.
[56] S.W.K. Kweh, A. Khor, P. Cheang, ”The production and characterization of hydroxyapatite(HA) powders.”, J. Mater. Process. Tech., 90, 373-377, 1999.
[57] M. Kumar, J. Xie, K. Chittur, C. Riley, “Transformation of modified brushite to hydroxyapatite in aqueous solution: elects of potassium substitution.”, Biomaterials, 20(15), 1389-1399, 1999.
[58] M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, R.H. Doremus, “Hydroxylapatite synthesis and characterization in dense polycrystalline form”, J. Mater. Sci., 11(11), 2027-2035, 1976.
[59] J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot, “High temperature characteristics of synthetic hydroxyapatite”, J. Mater. Sci.: Mater. Med., 4(1), 83-85, 1993.
[60] K. de Groot, C. P. A. T. Klein, J. G. C. Wolke, J. M. A. de Blieck-Hoger-Vorst, “CRC Handbook of Bioactive Ceramics”, edited by T. Yamamure, L. L. Hench, and J. Wilson, CRC Press Inc., Boca Raton, Florida, Vol. II, pp.3-16, 1990.
[61] Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, “Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering.”, Mate. Lett., 23(1-3), 147-151, 1995.
[62] The World's No.1 Science & Technology News Service, “Nanotechnology may create new organs”, NewScientist.com news service, 8 July 2003.
[63] Q. Liu, J.R. de Wijn, C.A. van Blitterswijk, “Nano-apatite/polymer composites: mechanical and physicochemical characteristics”, Biomaterals, 18(19), pp.1263-1270, 1997.
[64] E. Gentleman, A. N. Lay, D. A. Dickerson, E. A. Nauman, G. A. Livesay and K. C. Dee, “Mechanical characterization of collagen fibers and scaffolds for tissue engineering”, Biomaterials, 24(21), 3805-3813, 2003.
[65] Y. Zhang, M.Q. Zhang, “Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release.”, J. Biomed. Mater. Res., 62(3), 378-386, 2002.
[66] L. Liu, E. B. Hunziker, N. X. Randell, K. de Groot, P. Layrolle, “Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate“, Biomaterials, 24(1), 65-70, 2003.
[67] R.S. Roth, T. Negas, L.P. Cook, “Phase diagrams for ceramists Vol. V”, Amer. Ceram. Soc., Ohio, U.S.A., pp.321-322, 1983.
[68] 趙承琛, 界面科學基礎(新改定版) , 3rd ed., 復文書局, 台灣, pp. 24-28, pp.74-117, 2006.
[69] E.W. Kaler, K.L. Herriugton, A.K.Murthy, “Phase-behavior and structures of mixtures of anionic and cationic surfactants.”, J. Phys. Chem.-US, 96(16), pp.6698-6707, 1992.
[70] K.L. Herrington, E.W.Kaler, “Phase-behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl-sulfate (SDS).”, J. Phys. Chem., 97(51), 13792-13802, 1993.
[71] M.T. Yatcilla, K.L. Herrington, L.L.Bracher, “Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS)”, J. Phys. Chem., 100(14), 5874-5879, 1996.
[72] A. Bumajdad, J. Eastoe, P. Griffiths, D.C. Steytler, R.K. Heenan, J.R. Lu, and P. Timmins, “Interfacial compositions and phase structures in mixed surfactant microemulsions”, Langmuir, 15(16), 5271-5278, 1999.
[73] T. Kawasaki, “Hydroxyapatite as a liquid-chromatographic packing”, J Chromatogr., 544(1-2), 147-184, 1991.
[74] S. Brunauer, L.S. Deming, W.S. Deming, E.T. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 62(7), 1723-1732, 1940.
[75] G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of Heterogeneous Catalysis”, vol.3, VCHD-69457 deinheim, p.1508, 1997.
[76] M.T. Fulmer, P.W. Brown, ”Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite”, J. Mater. Sci.: Mater. Med., 9(4), 197-202, 1998.
[77] B. Jahn, E. Martin, A. Stueben, S. Bhakdi, “Susceptibility testing of Candida albicans and Aspergillus species by a simple microtiter menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay”, J Clin. Microbiol, 33(3), 661-667, 1995.
[78] A. Mortier, J. Lemaitre, L. Rodrique, P.G. Rouxhet, “Synthesis and thermal-behavior of well-crystallized calcium deficient phosphate apatite”, J. Solid. State. Chem., 78(2), 215-219, 1989.
[79] K. Ishikawa, P. Ducheyne, S. Radin, “Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis”, J. Mater. Sci.: Mater. Med., 4(2), 165-168, 1993.
[80] L. Yubao, J. de Wijn, C.P.A.T. Klein, S. van De Meer, K de Groot, “Preparation and characterization of nanograde osteoapatite-like rod crystals”, J. Mater. Sci.: Mater. Med., 5(5), 252-255, 1994.
[81] B.D. Cullity, “Elements of X-ray Diffraction”, 2nd Edition, Addison-Wesley Publishing Company, Reading, MA, p.87, 1978.
[82] M.J. Kohn, J. Rakovan, J.M. Hughes, ”Reviews in Mineralogy and Geochemistry Volume 48, Phosphates: Geochemical, Geobiological, and Materials Importance.”, Ed. By P.H. Ribbe, Minerallogical Society of America, Washington, DC., p.427, 2002.
[83] B.B. Tomazic, I. Mayer, W.E. Brown, “Ion incorporation into octacalcium phosphate hydrolyzates”, J. Crystal Growth, 108(3-4), 670-682, 1991.
[84] W.E. Brown, “Crystal growth of bone mineral”, Clin. Orthop. Relat. Res., 44(1), 205-220, 1966.
[85] H.E. Feki, J.M. Savariault, A.B. Salah, M. Jemal, “Sodium and carbonate distribution in substituted calcium hydroxyapatite”, Solid State Sci., 2(5), 577-586, 2000.
[86] M. Mathew, S. Takagi, “Structures of biological minerals in dental research”, J. Res. Natl. Inst. Stand. Tech., 106(6), pp.1035-1044, 2001.
[87] M. C. Chang, J. Tanaka, “FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde”, Biomaterials, 23(24), 4811– 4818, 2002.
[88] H.E. Feki, J.M. Savariault, A.B. Salah, “Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca9Na0.5(PO4)4.5(CO3)1.5 (OH)2”, J. Alloys. Compd., 287(1-2), 114-120, 1999.
[89] D.A. Palmer, R.V. Eldik, “The chemistry of metal carbonato and carbon dioxide complexes”, Chem. Rev., 83(6), 651–731, 1983.
[90] J.N. Butler, “Carbon dioxide equilibria, in catalytic activation of carbon dioxide.”, In: AyersWM, editor. AcS symposium series, Vol.363. Washington, DC: American Chemical Society, p. 9, 1988.
[91] Y. Liu, G.H. Nancollas, “Crystallization and colloidal stability of calcium phosphate phases”, J. Phys. Chem. B, 101(18), 3464-3468, 1997.
[92] P. Zhu, Y. Masuda, K. Koumoto, “The effect of surface charge on hydroxyapatite nucleation”, Biomaterials 25(17), 3915-3921, 2004.
[93] L. Yan, Y.D. Li , Z.X. Deng, J. Zhuang, X.M. Sun, “Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods”, Inter. J. Inorg. Mater. 3(7), 633-637, 2001.
[94] A. Mortier, J. Lemaitre, L. Rodrique, P.G. Rouxhet, “Synthesis and thermal-behavior of well-crystallized calcium-deficient phosphate apatite”, J. Solid. State. Chem., 78(2), 215-219, 1989.
[95] J.M. Tian, Y. Zhang, X.M. Guo, L.M. Dong, “Preparation and characterization of hydroxyapatite suspensions for solid freeform fabrication”, Ceram. Inter., 28(3), 299-302, 2002.
[96] D. Walsh, J.L. Kingston, B.R. Heywood, S. Mann, “Influence of monosaccharides and related molecules on the morphology of hydroxyapatite”, J. Crystal Growth, 133(1-2), 1-12, 1993.
[97] D.H. Gray, S. Hu, E. Juang, D.L. Gin, “Highly ordered polymer-inorganic nanocomposites via monomer self-assembly: In situ condensation approach”, Adv. Mater., 9(9), 731-736, 1997.
[98] M.J. Rosen, “Surfactants and interfacial phenomena”, 2nd Edition., John Wiley & Sons, Inc. ,New York, pp.108-136, 1989
[99] F. C. M. Driessens, R. M. H. Verbeeck, “Biominerals”, CRC Press: Boca Raton, FL, 61-72, 1990.
[100] C.S. Barrett, T.B. Massalski, Structure of Metals, Pergamon Press, Oxford, p.204, 1956.
[101] M.I. Kay, R.A. Young, A.S. Posner, “Crystal Structure of Hydroxyapatite”, Nature, 204, 1050-1052, 1964.
[102] J. Ando, S. Matsuno, ” Ca3(PO4)2 - CaNaPO4 System”, Bull. Chem. Soc. Jpn. 41(2), 342-347, 1968.
[103] E.A.P. De Maeyer, R.M.H. Verbeeck, D.E. Naessns, “Stoichiometry of Na+ and CO32--containing apatites obtained by hydrolysis of monetite”, Inorg. Chem., 32(25), 5709-5714, 1993.
[104] J.M. Wu, T.S. Yeh, “Sintering of hydroxyapatite zirconia composite- materials”, J. Mater. Sci., 23(10), 3771-3777, 1988.
[105] S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, “CaO–P2O5–Na2O- based sintering additives for hydroxyapatite (HAp) ceramics”, Biomaterials, 25(12), 2331-2339, 2004.
[106] P.E. Wang, T.K. Chaki, “Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate”, J. Mater. Sci.: Mater. Med., 4(2), 150-158, 1993.
[107] W.J. Shih, M.H. Hon, M.C. Wang, “Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4•2H2O and CaCO3 by hydrolysis method”, J. Crystal Growth, 270(1-2), 211-218, 2004.
[108] G. Muralithran, S. Ramesh, “The effects of sintering temperature on the properties of hydroxyapatite”, Ceram. Inter., 26(2), 221-230, 2000.
[109] A. Krajewski, A. Ravaglioli, L. Riva di Sanseverino, F. Marchetti, G. Monticelli, “The behaviour of apatite-based ceramics in relation to the critical 1150°–1250°C temperature range”, Biomaterials, 5(2), 105-108, 1984.
[110] T. Kijima, M. Tsutsumi, “Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite”, J. Am. Ceram. Soc., 62(9-10), 455-460, 1979.
[111] R.G.T. Geesink, K. De Groot, P.A.T. Christel, ”Chemical Implant Fixation Using Hydroxyl-Apatite Coatings: The Development of a Human Total Hip Prosthesis for Chemical Fixation to Bone Using Hydroxyl-Apatite Coatings on Titanium Substrates.”, Clin. Orthop. Relat. Res., 225(12), 147-170, 1987.
[112] R.G.Y. Geesink, K. de Groot, C.P.A. Klein, “Bonding of bone to apatite-coated implants”, J. Bone Joint Surg. Br., 70-B(1), 17-22, 1988.
[113] W.J. Shih, J.W. Wang, M.C. Wang, M.H. Hon, “A Study on the Phase Transformation of the Nanosized Hydroxyapatite Synthesized by Hydrolysis Using In-situ High Temperature X-Ray Diffraction”, Mater. Sci. Eng.: C-BIO, S 26(8), 1434-1438, 2006.