| 研究生: |
周昱成 Chou, Yu-Cheng |
|---|---|
| 論文名稱: |
過水障礙物流形對壅塞明渠流況之影響 The Shape Effects of a Submerged Obstacle on the Choked Open-Channel Flow |
| 指導教授: |
唐啟釗
Tang, Chii-Jau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | von Mises轉換 、曲線流 、流線座標 、越臨界流 、最佳化 、未知流量 |
| 外文關鍵詞: | critical flow, streamline coordinate, unknown flow discharge, optimization, choked flow |
| 相關次數: | 點閱:154 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
明渠水流通過潛水堰等結構物後,所產生的轉換(transition)流況,一直都是水利工程師所感興趣的問題。這些轉換流況通過臨界點的越臨界流流況,更是相當重要,因為臨界點將是整體渠道流量的控制點。此控制點的存在,也是淹水發生的必要因素;當發生淹水時,下游將無法適量排出上游提供之流量,必須抬升水位以增加可通過流量,因此形成壅塞流(choked flow),而其壅塞位置就是臨界點的位置。從傳統明渠水力學,可知臨界點處將發生於底床最高點及比能最小處,但從實際過堰水流的觀察中,可知堰頂處水流將不再是靜水壓力分布,且臨界點不可能同時出現在同高的堰頂處,因此這個結果將不再適用。為此,本研究考慮自由液面中水面斜率的完整效應,使得越臨界點之明渠水流分析更符合實況。
本研究採用流線座標數值方法,計算越臨界流經不同堰形(包含底床斜率與曲率變化)之流況。並搭配流線座標及使用擴充型von Mises轉換,來解決傳統卡氏座標應用不規則邊界計算的困難。但因涉及未知自由液面的計算,且發生臨界條件下的流量為未知值,使得用一般的求解方法,例如:迭代法或牛頓法的計算將遇到許多衍生困難。為此,本研究使用最佳化的方法來計算,來解決此非線性的問題。
本文併用一維和二維計算,以得到自由液面形狀和臨界流量,並進一步分析其斷面速度和壓力分布。得知二維越臨界流,使用一維流管概念的計算將是可行的。除此之外,不同堰形的水力特性也將是本研究的分析重點。從而得知改變堰形的斜率與曲率,將能對底床負壓力有直接的改善功效。並推論底床斜率的影響似乎較曲率來的明顯。
Floods occur when the flow chokes in the transition from the subcritical flow at upstream to the supercritical flow at downstream, for example, the flow over a high submerged weir. In this case, the curvilinear flow path makes non-hydrostatic pressure distribution and non-uniform flow velocity in the cross section. In consequence, the complete dynamic condition at curved free-surface involves the square of free-surface slope in addition to the conventional one-dimensional open channel flow theory because the ratio of vertical to horizontal velocity component there is exactly the slope of free-surface. To deal with the unknown variables of flow discharge, critical point and free-surface elevations, we used the one-dimensional (1-D) approach by sequential quadratic programming optimization. For the two-dimensional transitional choked flow, the 1-D optimization approach is utilized to calculate the free-surface elevation by using many 1-D streamtubes, for each streamtube bounded by the free-surface and a varied streamline below the free surface. Moreover, the extend von Mises transformation for given x=x(ξ) and stream function ψ=ψ(η) were used to find out the position of internal streamlines y=y(ξ,η) in the streamline coordinate (ξ,η). To this end, the elevations of all internal streamlines were obtained by solving the Laplace equation under the calculated free-surface elevation. Using them in this study, different shapes of a submerged obstacle were first investigated for the choked open-channel flow. Then the channel bottom with different slopes and curvatures are used to test their influences on the choked flow.
1. 唐啟釗、陳智恆、黃進坤,「流線座標法應用於二維自由液面勢流場之數值研究」,海洋工程研討會論文集,第35期,第55-59頁,2013
2. 唐啟釗,「流線座標法應用於二維壅塞型越臨界之穩態液面與黏性流場分析」,海洋工程研討會論文集,第38期,第 29-34頁,2016
3. 陳智恆,「明渠亞臨界流經底床突起物之流線分析」,國立成功大學水利及海洋工程學系碩士論文,2014
4. 饒迪崴,「流線座標法應用於二維越臨界壅塞型流場分析」,國立成功大學水利及海洋工程學系碩士論文,2016
5. Bélanger, J. B. Notes sur le cours d’hydraulique. Mém. EcoleNat. des Ponts et Chaussées, Paris, 1849 (in French).
6. Bakhmeteff, B. "Discussion to tests of broad crested weirs." Trans. ASCE, 96, 423-434, 1932.
7. Barron, R. M. "Computation of incompressible potential flow using von Mises coordinates." Mathematics and Computers in Simulation, 31(3), 177-188, 1989.
8. Birkhoff, G., and Mac Lane, S. A survey of modern algebra, CRC Press, Boca Raton, 2010.
9. Boadway, J. D. "Transformation of elliptic partial differential equations for solving two-dimensional boundary value problems in fluid flow." International Journal for Numerical Methods in Engineering, 10(3), 527-533, 1976.
10. Boussinesq, J. Essai sur la théorie des eaux courantes, Imprimerie Nationale, Paris, 1877.
11. Castro-Orgaz, O. "Potential flow solution for open-channel flows and weir-crest overflow." Journal of Irrigation and Drainage Engineering, 139(7), 551-559, 2013.
12. Castro-Orgaz, O., and Hager, W. H. "Curved-streamline transitional flow from mild to steep slopes." Journal of Hydraulic Research, 47(5), 574-584, 2009.
13. Castro-Orgaz, O., and Hager, W. H. "Velocity profile approximations for two-dimensional potential open channel flow." Journal of Hydraulic Research, 51(6), 645-655, 2013.
14. Chow, V. T. Open-channel hydraulics, McGraw-Hill, New York, 1959.
15. Dickson, L. E. Elementary theory of equations, J. Wiley & sons, Incorporated, 1914
16. Dressler, R. F. "New nonlinear shallow-flow equations with curvature." Journal of Hydraulic Research, 16(3), 205-222, 1978.
17. Fawer, C. "Etude de quelques écoulements permanents à filets courbes." Thesis, Université de Lausanne, Lausanne, Switzerland, 1937.
18. Fenton, J. D. "Channel flow over curved boundaries and a new hydraulic theory." Proc., Proceedings of 10th Congress, Asia and Pacific Division of International Association for Hydraulic Research, Langkawi, Malaysia, 266-273, 1996.
19. Griva, I., Nash, S., and Sofer, A. Linear and nonlinear optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2009.
20. Hager, W. H. "Critical flow condition in open channel hydraulics." Acta Mechanica, 54(3), 157-179, 1985.
21. Hager, W. H., and Hutter, K. "Approximate treatment of plane channel flow." Acta Mechanica, 51(1), 31-48, 1984.
22. Henderson, F. M. Open channel flow, Macmillan ; Collier Macmillan, New York London, 1966.
23. Jaeger, C., and Wolf, P. O. Engineering fluid mechanics. Translated from German, Blackie and Son, London, 1956.
24. Matthew, G. D. "On the influence of curvature, surface tension and viscosity in flow over round- crested weirs." Proceedings of the Institution of Civil Engineers, 25(4), 511-524, 1963.
25. Matthew, G. D. "Higher order, one-dimensional equations of potential flow in open channels." Proceedings of the Institution of Civil Engineers, 91(2), 187-201, 1991.
26. Montes, J. "Potential-flow solution to 2D transition from mild to steep slope." Journal of Hydraulic Engineering, 120(5), 601-621, 1994.
27. Nocedal, J., and Wright, S. J. Numerical Optimization, Springer Science+Business Media LLC., New York, NY, 2006.
28. Sivakumaran, N. S., Tingsanchali, T., and Hosking, R. J. "Steady shallow flow over curved beds." Journal of Fluid Mechanics, 128, 469-487, 1983.
29. Von Mises, R. "Bemerkungen zur hydrodynamik." Z. Angew. Math. Mech, 7, 425-429, 1927.