| 研究生: |
鍾金宏 Chung, Ching-hong |
|---|---|
| 論文名稱: |
錳離子摻雜和電極效應對CaCu3Ti4O12的介電性質及顯微結構的影響 Effects of Mn doping and electrode on the dielectric properties and microstructure of CaCu3Ti4O12 ceramics |
| 指導教授: |
方滄澤
Fang, Tsang-Tse |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 鈣鈦礦結構 、介電常數 、CaCu3Ti4O12 |
| 外文關鍵詞: | CaCu3Ti4O12, perovskite, dielectric constant |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CaCu3Ti4O12(簡稱CCTO)是一種特別的介電陶瓷材料,其結構為鈣鈦礦立方晶結構。此材料特殊之處在於擁有極高的介電常數,如在室溫下可高達104~105,此外在廣泛的溫度範圍100K到600K間,其介電常數幾乎維持一定。但當溫度降至100K以下時,介電常數立即落降至約100。
本研究為探討添加MnO2和試片表面不同電極對CCTO介電和顯微結構的影響。可以發現錳的摻雜會降低CCTO的介電常數,另外由添加矽的CCTO其等效電路中,有包含晶域、晶域邊界、晶界、電極的存在。
An unusual dielectric ceramic material CaCu3Ti4O12 (CCTO) is a cubic perovskite structure. It possesses an extraordinarily high dielectric constant at room temperature of about 104~105. Besides, the dielectric constant is nearly constant over a wide temperature range ~100-600K. However the dielectric constant drops rapidly to 100 below about 100K.
In this study, we would discuss the influence of MnO2 addition and electrode difference on the dielectric behavior and microstructure of CCTO. We can find that manganese doping would decrease the dielectric constant of CCTO. In addition, an equivalent circuit of CaSiO3-CCTO including domain, domain boundary, grain boundary, and electrode contact is proposed.
[1] A. Deschanvres, B. Raveau, and F. Tollemer, Bull. Soc. Chim. Fr., 4077 (1967)
[2] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases”, J. Solid State Chem. 151, 323 (2000)
[3] D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12:One-step internal barrier layer capacitor”, Appl. Phys. Lett., 80, 12, 2153 (2002)
[4] P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, and A. Loidl, “Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12” Phys. Rev. B, 70, 172102 (2004)
[5] A. P. Ramirez, G. Lawes, V. Butko, M. A. Subramanian, and C. M. Varma, cond-mat, 0209498 (unpublished)
[6] M. W. Barsoum, “Fundamentals of Ceramics”, McGraw-Hill, Singapore, p526 (1997)
[7] A. J. Moulson, and J. M. Herbert, “Electroceramics Matterials, properties,applications”, Chapman and Hall, New York, p256 (1990)
[8] A. R. Von Hippel, Dielectrics and Waves, Chap31
[9] 邱碧秀, “電子陶瓷材料”, 徐氏基金會, 台北市, p129 (1988)
[10] D. C. Sinclair, and A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance”, J. Appl. Phys, 66, 8, 3850 (1989)
[11] B. Bochu, M. N. Deschizeaux, and J. C. Joibert, “Synthése et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12”, J. Solid State Chem. 29, 291 (1979)
[12] S. M. Moussa, and B. J. Kennedy, “Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3”, Materials Research Bulletin, 36, 13-14, 2525 (2001)
[13] Awatef Hassini, Monique Gervais, Jérôme Coulon, Vinh Ta Phuoc, and Francois Gervais, “Synthesis of Ca0.25Cu0.75TiO3 and infrared characterization of role played by copper”, Materials Science and Engineering B, 87, 2, 164 (2001)
[14] L. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. C. Homes “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12”, Phys. Rev. B, 65, 214112 (2002)
[15] N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, and M. N. Iliev, “Raman spectroscopy of CaCu3Ti4O12”, Phys. Rev. B, 66, 132102 (2002)
[16] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, “Giant dielectric constant response in a copper-titanate”, Solid State Communications, 115, 217 (2000)
[17] C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical Response of High-Dielectric-Constant perovskite-Relative Oxide ”, Science 293, 673 (2001)
[18] T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ”, Adv. Mater., 14, 18, 1321 (2002)
[19] T. B. Adams, D. C. Sinclair, and A. R. West, “Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics ” Phy. Rev. B, 73, 094124 (2006)
[20] T. T. Fang, and H. K. Shiau, “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12 ”, J. Am. Ceram. Soc., 87, 11, 2072 (2004)
[21] J. Li, A. W. Sleight, and M. A. Subramanian, “Evidence for internal resistive barrier in a crystal of the giant dielectric constant material:CaCu3Ti4O12”, Solid State Commun., 135, 260 (2005)
[22] T. T. Fang, and C. P. Liu, “Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12 ”, Chem. Mater., 17, 5167 (2005)
[23] T. T. Fang, Han-Yang Chung, and Ching-Hong Chung, “Manifestation of the dielectric responses of electrode contact and domain boundaries in CaSiO3-doped CaCu3Ti4O12”, submitted