簡易檢索 / 詳目顯示

研究生: 賴柏儒
Lai, Bo-Ru
論文名稱: 應用於神經形態儲備池運算之氧化銦鎵鋅-氧化鉭憶阻器動態訊號處理與模擬
Dynamic Signal Processing and Simulation in IGZO-TaOx Memristor for Neuromorphic Reservoir Computing
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 易失性記憶體時間序列訊息儲備池運算雙氧化層憶阻器自整流
外文關鍵詞: reservoir computing, dynamic memristor, neuromorphic computing, spatial- temporal information processing
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I EXTENDED ABSTRACT II 誌謝 VII 內文目錄 VIII 圖目錄 XII CHAPTER1 緒論 1 1-1 前言 1 1-2 研究動機與介紹 2 CHAPTER 2 理論基礎與文獻回顧 5 2-1 電阻式轉換記憶體(RRAM) 5 2-1-1 阻態轉換行為 6 2-1-2 阻態轉換機制 8 2-1-3 電容效應(Capacitive effect) 15 2-1-4 潛行電流(Sneak current) 17 2-2 神經元(Neuron)與突觸(Synapse) 19 2-2-1 神經元構造 19 2-2-2 突觸(Synapse)與突觸可塑性(Synaptic plasticity) 20 2-3 憶阻器的物理模型 21 2-4 突破類神經網絡訓練困境-憶阻器建構之儲備池運算 30 2-4-1 人工神經網絡(Artificial neural networks,ANNs) 30 2-4-2 儲備池運算(Reservoir computing,RC)的由來 33 2-4-3 憶阻器建構儲備池運算系統(Memristor-based RC system) 35 2-4-4 樹突行為模擬-動態電阻轉換憶阻器 39 2-5 相關文獻與應用42 2-5-1 用於高效時空(Spatial-Temporal)信息處理的基於憶阻器的樹突神經元 (Dendritic Neuron) 42 2-5-2 使用動態憶阻器(dynamic memristors)進行時間信息(temporal information) 處理的儲備池運算 46 2-5-3 用於實時(real-time)神經活動(neural activity)分析的憶阻器網絡(memristor networks) 51 CHAPTER 3 實驗方法與步驟 55 3-1 實驗材料 55 3-1-1 基板 55 3-1-2 基板清洗藥品 55 3-1-3 金屬電極 56 3-1-4 金屬氧化物 56 3-1-5 實驗使用氣氛 57 3-1-6 耗材 57 3-2 實驗設備 58 3-2-1 乾式熱氧化系統 58 3-2-2 濺鍍系統(Sputter system) 58 3-3 實驗流程 59 3-3-1 基板清洗 59 3-3-2 乾式熱氧化成長 SiO2 60 3-3-3 清洗已成長 SiO2 之基板 60 3-3-4 元件製備 60 3-4 分析儀器 61 3-4-1 表面粗度儀(α-step) 61 3-4-2 前瞻聚焦離子束系統(Advanced Focused Ion Beam System,FIB) 62 3-4-3 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 63 3-4-4 精密半導體參數分析儀(Precision Semiconductor Parameter Analyzer) 64 CHAPTER4 結果與討論 65 4-1 元件結構與命名 65 4-2 材料分析與討論 67 4-3 三端式雙層結構電流分析 70 4-3-1 薄膜電晶體 I-V 轉換特性曲線與電流傳輸機制 70 4-3-2 連續刺激之增益與抑制行為 72 4-4 兩端式元件基本電性量測與分析 75 4-4-1 單層氧化物元件電性分析 75 4-4-2 雙層氧化物憶阻器元件電性分析 77 4-4-3 不同厚度條件對元件之電性分析 79 4-4-4 不同掃幅條件對元件之電性分析 82 4-5 兩端式電流量測突觸元件操作 85 4-6 物理模型模擬及機制探討 89 4-6-1 非線性及短期記憶 89 4-7 IGZO-TaOx 憶阻器於儲備池運算系統中電性操作 98 4-7-1 四位元(4-bit)的輸入序列可應用於圖像辨識 98 4-7-2 在不同時序的電脈衝訊號輸入下創建代表儲備池狀態(reservoir state)的虛擬節點(virtual nodes) 105 CHAPTER5 結論 110 CHAPTER 6 參考文獻 111

    (1) Lanza, M.; Sebastian, A.; Lu, W. D.; Le Gallo, M.; Chang, M. F.; Akinwande, D.; Puglisi, F. M.; Alshareef, H. N.; Liu, M.; Roldan, J. B. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 2022, 376 (6597), eabj9979, DOI: 10.1126/science.abj9979.
    (2) Wang, Z.; Wu, H.; Burr, G. W.; Hwang, C. S.; Wang, K. L.; Xia, Q.; Yang, J. J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5 (3), 173-195, DOI: 10.1038/s41578-019-0159-3.
    (3) Zahoor, F.; Azni Zulkifli, T. Z.; Khanday, F. A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15 (1), 90, DOI: 10.1186/s11671-020-03299-9.
    (4) Asif, M.; Kumar, A. Resistive switching in emerging materials and their characteristics for neuromorphic computing. Mater. Today Electron. 2022, 1, DOI: 10.1016/j.mtelec.2022.100004.
    (5) Shi, T.; Wang, R.; Wu, Z.; Sun, Y.; An, J.; Liu, Q. A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications. Small Struct. 2021, 2 (4), DOI: 10.1002/sstr.202000109.
    (6) Valov, I. Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale. ChemElectroChem 2014, 1 (1), 26-36, DOI: 10.1002/celc.201300165.
    (7) Lee, J.; Schell, W.; Zhu, X.; Kioupakis, E.; Lu, W. D. Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM. ACS Appl. Mater. Interfaces 2019, 11 (12), 11579-11586, DOI: 10.1021/acsami.8b18386.
    (8) Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H. A double barrier memristive device. Sci Rep 2015, 5, 13753, DOI: 10.1038/srep13753.
    (9) Solan, E.; Dirkmann, S.; Hansen, M.; Schroeder, D.; Kohlstedt, H.; Ziegler, M.; Mussenbrock, T.; Ochs, K. An enhanced lumped element electrical model of a double barrier memristive device. J. Phys. D: Appl. Phys 2017, 50 (19), DOI: 10.1088/1361-6463/aa69ae.
    (10) Dirkmann, S.; Hansen, M.; Ziegler, M.; Kohlstedt, H.; Mussenbrock, T. The role of ion transport phenomena in memristive double barrier devices. Sci Rep 2016, 6, 35686, DOI: 10.1038/srep35686.
    (11) Sun, B.; Chen, Y.; Xiao, M.; Zhou, G.; Ranjan, S.; Hou, W.; Zhu, X.; Zhao, Y.; Redfern, S. A. T.; Zhou, Y. N. A Unified Capacitive-Coupled Memristive Model for the Nonpinched Current-Voltage Hysteresis Loop. Nano Lett. 2019, 19 (9), 6461-6465, DOI: 10.1021/acs.nanolett.9b02683.
    (12) Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18 (5), 507-519, DOI: 10.1109/TCT.1971.1083337.
    (13) Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1 (1), 22-29, DOI: 10.1038/s41928-017-0006-8.
    (14) Lu, W.; Kim, K.-H.; Chang, T.; Gaba, S. Two-terminal resistive switches (memristors) for memory and logic applications. In 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), IEEE: 2011; pp 217-223. DOI: 10.1109/ASPDAC.2011.5722187.
    (15) Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78 (10), 1629-1636, DOI: 10.1109/5.58356.
    (16) Kim, T.; Kim, S. H.; Park, J. H.; Park, J.; Park, E.; Kim, S. G.; Yu, H. Y. An Artificial Neuron Using a Bipolar Electrochemical Metallization Switch and Its Enhanced Spiking Properties through Filament Confinement. Adv. Electron. Mater. 2020, 7 (1), DOI: 10.1002/aelm.202000410.
    (17) Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15 (4), 250-63, DOI: 10.1038/nrn3708.
    (18) Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453 (7191), 80-3, DOI: 10.1038/nature06932.
    (19) Williams, R. S. How we found the missing memristor. IEEE Spectr. 2008, 45 (12), 28-35, DOI: 10.1109/MSPEC.2008.4687366.
    (20) Yakopcic, C.; Taha, T. M.; Subramanyam, G.; Pino, R. E. Memristor SPICE Modeling. In Advances in Neuromorphic Memristor Science and Applications; Kozma, R.; Pino, R. E.; Pazienza, G. E., Eds.; Springer Netherlands: Dordrecht, 2012; pp 211-244. DOI: 10.1007/978-94-007-4491-2_12.
    (21) Chang, T.; Jo, S.-H.; Kim, K.-H.; Sheridan, P.; Gaba, S.; Lu, W. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A-Mater. Sci. Process. 2011, 102 (4), 857-863, DOI: 10.1007/s00339-011-6296-1.
    (22) Sun, K.; Chen, J.; Yan, X. The Future of Memristors: Materials Engineering and Neural Networks. Adv. Funct. Mater. 2020, 31 (8), DOI: 10.1002/adfm.202006773.
    (23) Jaeger, H. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the" echo state network" approach. 2002.
    (24) Huang, H.-M.; Wang, Z.; Wang, T.; Xiao, Y.; Guo, X. Artificial Neural Networks Based on Memristive Devices: From Device to System. Adv. Electron. Mater. 2020, 2 (12), DOI: 10.1002/aisy.202000149.
    (25) Bisharad, D.; Laskar, R. H. Music genre recognition using convolutional recurrent neural network architecture. Expert Syst. 2019, 36 (4), DOI: 10.1111/exsy.12429.
    (26) Lukoševičius, M.; Jaeger, H.; Schrauwen, B. Reservoir Computing Trends. KI - Künstliche Intelligenz 2012, 26 (4), 365-371, DOI: 10.1007/s13218-012-0204-5.
    (27) Sakemi, Y.; Morino, K.; Leleu, T.; Aihara, K. Model-size reduction for reservoir computing by concatenating internal states through time. Sci Rep 2020, 10 (1), 21794, DOI: 10.1038/s41598-020-78725-0.
    (28) Tanaka, G.; Yamane, T.; Heroux, J. B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100-123, DOI: 10.1016/j.neunet.2019.03.005.
    (29) Soriano, M. C.; Ortín, S.; Keuninckx, L.; Appeltant, L.; Danckaert, J.; Pesquera, L.; Sande, G. v. d. Delay-Based Reservoir Computing: Noise Effects in a Combined Analog and Digital Implementation. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26 (2), 388-393, DOI: 10.1109/TNNLS.2014.2311855.
    (30) Antonik, P., Application of FPGA to real-time machine learning : hardware reservoir computers and software image processing. Springer: Cham, Switzerland, 2018.
    (31) Zhong, Y.; Tang, J.; Li, X.; Gao, B.; Qian, H.; Wu, H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021, 12 (1), 408, DOI: 10.1038/s41467-020-20692-1.
    (32) Cao, J.; Zhang, X.; Cheng, H.; Qiu, J.; Liu, X.; Wang, M.; Liu, Q. Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 2022, 14 (2), 289-298, DOI: 10.1039/d1nr06680c.
    (33) Li, X.; Tang, J.; Zhang, Q.; Gao, B.; Yang, J. J.; Song, S.; Wu, W.; Zhang, W.; Yao, P.; Deng, N.; Deng, L.; Xie, Y.; Qian, H.; Wu, H. Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 2020, 15 (9), 776-782, DOI: 10.1038/s41565-020-0722-5.
    (34) Yingxue, W.; Shih-Chii, L. A Two-Dimensional Configurable Active Silicon Dendritic Neuron Array. IEEE Trans. Circuits Syst. I, Reg. Papers 2011, 58 (9), 2159-2171, DOI: 10.1109/tcsi.2011.2112570.
    (35) Li, X.; Zhong, Y.; Chen, H.; Tang, J.; Zheng, X.; Sun, W.; Li, Y.; Wu, D.; Gao, B.; Hu, X.; Qian, H.; Wu, H. A Memristors-Based Dendritic Neuron for High-Efficiency Spatial-Temporal Information Processing. Adv. Mater. 2022, 2203684, DOI: 10.1002/adma.202203684.
    (36) Du, C.; Cai, F.; Zidan, M. A.; Ma, W.; Lee, S. H.; Lu, W. D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8 (1), 2204, DOI: 10.1038/s41467-017-02337-y.
    (37) Zhu, X.; Wang, Q.; Lu, W. D. Memristor networks for real-time neural activity analysis. Nat. Commun. 2020, 11 (1), 2439, DOI: 10.1038/s41467-020-16261-1.
    (38) Sun, J.; Yang, W.; Zheng, T.; Xiong, X.; Liu, Y.; Wang, Z.; Li, Z.; Zou, X. Novel nondelay-based reservoir computing with a single micromechanical nonlinear resonator for high-efficiency information processing. Microsyst. Nanoeng. 2021, 7, 83, DOI: 10.1038/s41378-021-00313-7.
    (39) John, R. A.; Demirag, Y.; Shynkarenko, Y.; Berezovska, Y.; Ohannessian, N.; Payvand, M.; Zeng, P.; Bodnarchuk, M. I.; Krumeich, F.; Kara, G.; Shorubalko, I.; Nair, M. V.; Cooke, G. A.; Lippert, T.; Indiveri, G.; Kovalenko, M. V. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 2022, 13 (1), 2074, DOI: 10.1038/s41467-022-29727-1.
    (40) Alomar, M. L.; Soriano, M. C.; Escalona-Morán, M.; Canals, V.; Fischer, I.; Mirasso, C. R.; Rosselló, J. L. Digital Implementation of a Single Dynamical Node Reservoir Computer. IEEE Trans. Circuits Syst. II, Exp.Briefs 2015, 62 (10), 977-981, DOI: 10.1109/TCSII.2015.2458071.
    (41) Chembo, Y. K. Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems. Chaos 2020, 30 (1), 013111, DOI: 10.1063/1.5120788.
    (42) Dion, G.; Mejaouri, S.; Sylvestre, J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 2018, 124 (15), DOI: 10.1063/1.5038038.
    (43) Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo, H.-J.; Qian, H.; Wu, H. Neuro-inspired computing chips. Nat. Electron. 2020, 3 (7), 371-382, DOI: 10.1038/s41928-020-0435-7.
    (44) Lyu, C.-H.; Chaurasiya, R.; Lai, B.-R.; Chen, K.-T.; Chen, J.-S. Interfacial traps and band offset enabled charge separation facilitating current/capacitance hysteresis in dual-oxide layered structure. Appl. Phys. Lett. 2022, 121 (18), DOI: 10.1063/5.0122317.
    (45) Ran, X.; Hou, P.; Song, J.; Song, H.; Zhong, X.; Wang, J. Negative differential resistance effect in resistive switching devices based on h-LuFeO3/CoFe2O4 heterojunctions. Phys. Chem. Chem. Phys. 2020, 22 (10), 5819-5825, DOI: 10.1039/D0CP00530D.
    (46) Strukov, D. B.; Williams, R. S. Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A-Mater. Sci. Process. 2008, 94 (3), 515-519, DOI: 10.1007/s00339-008-4975-3.
    (47) Appeltant, L.; Soriano, M. C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C. R.; Fischer, I. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468, DOI: 10.1038/ncomms1476.
    (48) Chen, L.-W.; Wang, W.-C.; Ko, S.-H.; Chen, C.-Y.; Hsu, C.-T.; Chiao, F.-C.; Chen, T.-W.; Wu, K.-C.; Lin, H.-W. Highly Uniform All‐Vacuum‐Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing. Adv. Electron. Mater. 2020, 3 (1), DOI: 10.1002/aisy.202000196.
    (49) Sun, L.; Wang, Z.; Jiang, J.; Kim, Y.; Joo, B.; Zheng, S.; Lee, S.; Yu, W. J.; Kong, B.-S.; Yang, H. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 2021, 7 (20), eabg1455, DOI: 10.1126/sciadv.abg1455.
    (50) Yang, J. Y.; Park, M.; Yeom, M. J.; Baek, Y.; Yoon, S. C.; Jeong, Y. J.; Oh, S. Y.; Lee, K.; Yoo, G. Reconfigurable Physical Reservoir in GaN/α-In2Se3 HEMTs Enabled by Out-of-Plane Local Polarization of Ferroelectric 2D Layer. ACS Nano 2023, 17 (8), 7695-7704, DOI: 10.1021/acsnano.3c00187.
    (51) Farronato, M.; Mannocci, P.; Melegari, M.; Ricci, S.; Compagnoni, C. M.; Ielmini, D. Reservoir Computing with Charge‐Trap Memory Based on a MoS2 Channel for Neuromorphic Engineering. Advanced Materials 2022, 2205381, DOI: 10.1002/adma.202205381.
    (52) Soures, N.; Hays, L.; Kudithipudi, D. Robustness of a memristor based liquid state machine. In 2017 International Joint Conference on Neural Networks (IJCNN), 2017; pp 2414-2420. DOI: 10.1109/IJCNN.2017.7966149.
    (53) Hassan, A. M.; Li, H. H.; Chen, Y. Hardware implementation of echo state networks using memristor double crossbar arrays. In 2017 International Joint Conference on Neural Networks (IJCNN), 2017; pp 2171-2177. DOI: 10.1109/IJCNN.2017.7966118.
    (54) Kudithipudi, D.; Saleh, Q.; Merkel, C.; Thesing, J.; Wysocki, B. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing. Front. Neurosci. 2015, 9, 502, DOI: 10.3389/fnins.2015.00502.
    (55) Yang, J.; Zhang, F.; Xiao, H. M.; Wang, Z. P.; Xie, P.; Feng, Z.; Wang, J.; Mao, J.; Zhou, Y.; Han, S. T. A Perovskite Memristor with Large Dynamic Space for Analog-Encoded Image Recognition. ACS Nano 2022, 16 (12), 21324-21333, DOI: 10.1021/acsnano.2c09569.

    無法下載圖示 校內:2028-08-07公開
    校外:2028-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE