| 研究生: |
林意棟 Lin, Yi-Dong |
|---|---|
| 論文名稱: |
以原子力顯微術探討經凝血酶調節素基因導入後之細胞的力學性質 Study on Mechanical Property of Thrombomodulin Mutated Cell by Atomic Force Microscopy |
| 指導教授: |
葉明龍
Yeh, Ming-Long 張憲彰 Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 凝血酶調節素 、細胞骨架 、原子力顯微鏡 、力-距離曲線 |
| 外文關鍵詞: | Thrombomodulin, Atomic Force Microscope Force-distance Curve, Cytoskeleton |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類凝血調節素(TM)是細胞膜表面的一種醣蛋白,可藉和凝血蛋白酵素(thrombin)結合來調控體內促進凝血的生理機制。另外,近年亦有文獻指出TM具有其他生理功能,例如調節細胞骨架,進而調控細胞間結合與改變細胞形態等。皮膚之上皮組織中無TM表現的基部層(basal layer),其細胞形態較呈正方體。相對地,位其上層具TM表現的刺狀層(spinous layer),細胞形狀則較為扁平。是否TM的表現會加強與細胞骨架間的接合,使得細胞表現較強的張力,進而使細胞形態由正方體改變為較為扁平,即為本研究欲探討之焦點。
原子力顯微鏡(AFM)可取得活體細胞的高解析度影像,也可藉由力-距離曲線(force-distance curve)的擷取來評估細胞的力學性質。本研究便是使用AFM來觀察人類黑色素瘤細胞,在經過基因轉殖調控TM表現與否之後,於細胞形態及力學性質上的差異,進一步探討TM在細胞內所扮演的角色與作用機制。我們以TM negative的人類黑色素腫瘤細胞(vector cell)來模擬基部層的細胞,另外以基因轉殖的方式使同種細胞產生TM大量表現的效果(TM cell)來模擬刺狀層的細胞。依目前結果,TM cell之彈性模數為2646 ± 309 Pa (n = 6),較vector cell之1687 ± 235 Pa (n = 6)來得高,更說明了TM的表現確實能夠使細胞內部張力改變進而影響其形態的論述。
此外,本研究嘗試利用AFM影像掃瞄之力量設定參數的差距,發展能夠更快速評估細胞彈性模數分佈的新概念(isoforce mapping),期望以較短的量測時間完成活體細胞整體的彈性力學量測。經實際驗證後,目前此技術顯示能快速得到探針受力與細胞形變間的關係,唯數據分析與數學模型的修正上,仍有問題尚待克服。
Thrombomodulin (TM) is a glycoprotein distributed on cell membrane. TM can alter the coagulant activity of thrombin in terms of forming complex with thrombin. Recent studies have demonstrated other novel functions of TM. For example, TM could modulate the attachment of cytoskeleton, and then regulate cell-cell adhesion and cell morphology. Besides, the TM negative cells of basel layer at epidermis of skin tissue, exhibit a cubic shape, while the TM expressed cells of spinous layer show flat form. Thus, our hypothesis is that the expression of TM enhances the connection of cytoskelotons, results in stronger tension force, and then alters cell shape from cubic to flat form.
Atomic force microscopy (AFM) has high resolution to image living cells, and it could be operated in similarly physiology environment, and AFM could be used to evaluate mechanical properties of cells by using force-distance curve. In this study, we use AFM to investigate the effect of TM on regulating cell morphology and mechanical properties in human melanoma cell with and without TM expression after gene transfection. We choose TM negative human melanoma cell (A2058) to simulate basel layer cell, and use gene transfection to obtain TM over-expressed cell to simulate cell of spinous layer. From the preliminary result, we found that stiffness of cells transfected TM (TM cell) are higher than stiffness of TM negative cell (vector cell). The Young’s modulus of both are 2646 ± 309 Pa (n = 6) and 1687 ± 235 Pa (n = 6), respectively.
Furthermore, we also attempt to develop a new method to evaluate whole cell mechanical properties fast by means of difference of scan forces. From the preliminary result, this method could get the force on probe and the deformation of whole cell with high speed. But there are still some problems on data analyzing and mathematic model correcting.
[1] Zile,M.R. et al. Constitutive properties of adult mammalian cardiac muscle cells. Circulation 98, 567-579 (1998).
[2] Wu,Z.Z. et al. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology 37, 279-290 (2000).
[3] Salter,D.M. et al. Differential responses of chondrocytes from normal and osteoarthritic human articular cartilage to mechanical stimulation, Biorheology 39, 94-108 (2002).
[4] Porter,J.D. et al. Constitutive properties, not molecular adaptations, mediate extraocular muscle sparing in dystrophic mdx mice. Faseb Journal 17, 893-895 (2003).
[5] Brandao,M.M. et al. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. European Journal Haematology 70, 207-211 (2003).
[6] Alberts, et al. Molecular Biology of the Cell, 3rd Ed., GARLAND, 796-834 (2003).
[7] Harris,A.K. et al. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177-179 (1980).
[8] Burton,K. et al. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450-454 (1997).
[9] Tan,J.L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America 100, 1484-1489 (2003).
[10] du,R.O. et al. Force mapping in epithelial cell migration. Proceedings of the National Academy of Sciences of the United States of America 102, 2390-2395 (2005).
[11] Ashkin,A. et al. Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters 24, 156-159 (1970).
[12] Ashkin,A. et al. Optical trapping and manipulation of viruses and bacteria. Science 210, 1081-1088. (1980).
[13] Girard,K.D. et al. Dynacortin contributes to cortical viscoelasticity and helps define the shape changes of cytokinesis. EMBO Journal 23, 1536-1546 (2004).
[14] Guilak,F. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology 37, 27-44 (2000).
[15] Sato,M. et al. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7, 276-286 (1987).
[16] Jones,W.R. et al. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. Journal of Biomechanics 32, 119-127 (1999).
[17] Charras,G.T. et al. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86, 85-95 (2001).
[18] Pasternak,C. et al. Lymphocyte mechanical response triggered by cross-linking surface receptors. Journal of Cell Biology 100, 860-872 (1985).
[19] Petersen,N.O. et al. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proceedings of the National Academy of Sciences of the United States of America 79, 5327-5331 (1982).
[22] Karduna,A.R. et al. Experimental and numerical analyses of indentation in finite-sized isotropic and anisotropic rubber-like materials. Annals of Biomedical Engineering 25, 1009-1016 (1997).
[21] Athanasiou,K.A. et al. Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. Biomaterials 20, 2405-2415 (1999).
[22] 陳佳琦、吳華林,凝血調節素之表現與調節細胞週期的相關性,國立成功大學生物化學暨分子生物學研究所,碩士論文(2006)。
[23] Huang,H.C. et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. Journal of biological chemistry 278, 46750-46759 (2003).
[24] Binnig,G. et al. Atomic force microscope. Physical Review Letters 56, 930-933 (1986).
[25] Morris,V.J. et al. Atomic Force Microscopy for Biologists. Imperial College Press, 44-48 (1999).
[26] Piner,R.D. et al. A new tool for studying the in-situ growth processes for self-assembled monolayers under ambient conditions. Langmuir 15, 5457-5460 (1999).
[27] Zammaretti,P. et al. Atomic force microscope: a tool for studying ionophores. Analytical Chemistry 72, 3689-3695 (2000).
[28] Tortonese,M. Cantilevers and tips for atomic force microscopy. IEEE Engineering in Medicine and Biology Magazine 16, 28-33 (1997).
[29] Rotsch,C. et al. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal 78, 520-535 (2000).
[30] Simon,A. et al. Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy. Cytometry A 54, 36-47 (2003).
[31 Zachee,P. et al. Imaging uremic red blood cells with the atomic force microscope. American Journal of Nephrology 14, 197-200 (1994).
[32] Lin,S. et al. Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cellular Microbiology 7, 1763-1770 (2005).
[33] Rotsch,C. et al. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 96, 921-926 (1999).
[34] Miyazaki,H. et al. Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries. Medical & Biological Engineering & Computing 37, 530-536 (1999).
[35] Fritz,M. et al. Actin binding to lipid-inserted alpha-actinin. Biophysical Journal 65, 1878-1885 (1993).
[36] Weisenhorn,A.L. et al. Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4, 106-113 (1993).
[37] Radmacher,M. et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophysical Journal 70, 556-567 (1996).
[38] Goldmann,W.H. et al. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Experimental Cell Research 239, 235-242 (1998).
[39] Hofmann,U.G. et al. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. Journal of Structural Biology 119, 84-91 (1997).
[40] Mizutani,T. et al. Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motility and the Cytoskeleton 59, 242-248 (2004).
[41] Nagayama,M. et al. Contribution of cellular contractility to spatial and temporal variations in cellular stiffness. Experimental Cell Research 300, 396-405 (2004).
[42] Braet,F. et al. Imaging surface and submembranous structures with the atomic force microscope: a study on living cancer cells, fibroblasts and macrophages. Journal of Microscopy 190, 328-338 (1998).
[43] Parpura V. et al. Atomic force microscopy study of the secretory granule lumen. Biophysical Journal 71, 2356-2366 (1996).
[44 Matzke,R. et al. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biology 3, 607-610 (2001).
[45] Domke, J. et al. Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope. Langmuir 14, 3320-3325 (1998).
[46] Benoit,M. et al.. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biology 2, 313-317 (2000).
[47] Benoit,M. et al. Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 172, 174-189 (2002).
[48] Shao,Z. et al. Biological atomic force microscopy: what is achieved and what is needed. Advances in Physics 45, 1-86 (1996).
[49] Le Grimellec,C. et al. Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophysical Journal 76, 1101-1111 (1998).
[50] Cleveland,J.P. et al. A non-destructive method for determining the spring constant of cantilevers for scanning force microscopy, Review of Scientific Instruments 64, 403-405 (1993).
[51] Sader,J.E. et al. Calibration of rectangular atomic force microscope cantilevers, Review of Scientific Instruments 70, 3967-3969 (1999).
[52] Sneddon,I.N. The relation between load and penatration in the cxisymmetric boussinesq problem for a punch of arbitrary profile, Journal of Engineering Science 3, 47-57 (1965).
[53] Almqvist,N. et al. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophysical Journal 86, 1753-1762 (2004).