| 研究生: |
羅惟隆 Luo, Wei-long |
|---|---|
| 論文名稱: |
水蒸氣及銅膜對Ge-GeOx核殼奈米線及Si1-xGexOy奈米線生長之影響 Effects of water vapor and copper films on the growth of Ge-GeOx nanowires and Si1-xGexOy nanowires |
| 指導教授: |
林文台
lin, Wen-tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 銅膜 、熱碳還原法 |
| 外文關鍵詞: | nanowires, vls |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討於1100℃經由熱碳還原GeO2粉末在純氬氣以及含有水氣的氬氣氣氛中,不同銅膜厚度對於生長Ge-GeOx 奈米線以及Si1-xGexOy之影響。於純氬氣氣氛中所生長的Ge-GeOx 奈米線為VLS機制。Ge-GeOx 奈米線的成核數目隨著銅膜厚度由10-30nm變多,當銅膜厚度為50nm時Ge-GeOx 奈米線為叢聚狀。高氬氣流量也會幫助Ge-GeOx 奈米線之成核。含水氣的氬氣(濕氬氣)中更促進Ge-GeOx 奈米線的生長,Ge-GeOx 奈米線生長的量隨水量從0.5-2ml而增加。然而過多的水量會消耗更多的碳粉,使的Ge-GeOx 奈米線生長反而被抑制。在濕氬氣氛中生長的Ge-GeOx 奈米線包含VLS以及VS機制。水氣扮演氧化以及還原的角色。於純氬氣氣氛中以及濕氬氣氣氛中Ge-GeOx 奈米線的生長機制個別描述。
在純氬氣以及濕氬氣中,CuSiGe催化位於矽基板周圍的紡錘狀以及羽毛狀紡錘狀以及羽毛狀之SiGeO奈米線的生長,生長機制皆為VLS。隨著銅膜厚度從50到10nm及導入水氣於氬氣中,SiGeO奈米線的形貌從羽毛狀變成紡錘狀,此結果似乎與羽毛狀頂端之球狀CuSiGe中Si/Ge比例比紡錘狀低有關。在濕氬氣中,抑制SiGeO奈米線藉由氫原子還原成Ge-SiGeO 核殼奈米線導因於動力效應。
Effects of Cu films on the growth of Ge-GeOx core-shell nanowires (Ge-GeOx NWs) and Si1-xGexOy nanowires (SiGeONWs) on Si substrates in dry Ar and moist Ar, respectively, via the carbothermal reduction of GeO2 powders at 1100℃ were studied. In dry Ar the growth of Ge-GeOx NWs follows the vapor-liquid-solid (VLS) process. The nuclei of Ge-GeOx NW increased with the thickness of Cu films in the range of 10-30 nm. With the Cu films 50 nm thick the Ge-GeOx NWs agglomerated. Higher Ar flow rate also enhanced the nucleation of Ge-GeOx NWs. In moist Ar the growth of Ge-GeOx NWs was further enhanced and their amount increased with the volume of water in the range of 0.5-2 ml. However, more water degraded the growth of Ge-GeOx NWs because of the exhaustion of much graphite powders. The growth of Ge-GeOx NWs follows both VLS and vapor-solid (VS) processes. The water vapor served as the role of oxidizer and reducer. The mechanisms for the growth of Ge-GeOx NWs in dry Ar and moist Ar are discussed, respectively.
The CuSiGe-catalyzed growth of spindle- and featherlike SiGeONW assemblies in dry Ar and moist Ar, following the VLS process, occurred on the periphery of the Si substrates. With decreasing the thickness of Cu films from 50 to 10nm and introducing the water vapor into flowing Ar , the morphology of SiGeONWs assemblies changed from featherlike to the spindlelike. These results seem to be concened with the smaller Si/Ge ratio of the CuSiGe spheroid on the tops of featherlike assemblies than that of spindelike ones. In moist Ar the inhibition of the reduction of SiGeONWs by atomic hydrogen to form Ge-SiGeO core-shell nanowires may be due to the kinetic effect.
1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2.馬振基, “奈米材料科技原理與應用”, 全華科技 (2003)
3.盧永坤, “奈米科技概論”,滄海書局(2005)
4.B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)
5.張立德, “奈米材料”, 五南出版社 (2002)
6.W. Barthlott and C. Neinhuis, Planta 202, 1 (1997)
7.C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997)
8.R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962)
9.R. Eisberg and R. Resnick, “Quantum Physics of atoms, molecules, solids, nuclei, and particles”, 2nd ed., New York:Wiley, pp.199 (1985)
10.陳貴賢, 吳季珍, “物理雙月刊”, 23, 609 (2001)
11.S. Iijima, Nature 354, 56 (1991)
12.N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995)
13.M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Romas, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 259, 568 (1996)
14.K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
15.D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
16.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
17.W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
18.Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, C. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
19.H. Dai, E. W. Wang, Y. Z. Lu, S. S. Fang, and C. M. Lieber, Nature 375, 769 (1995)
20.L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
21.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
22.Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
23.Y. Saito, S. Uemura, Carbon 38, 169 (2000)
24.M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami,H.Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
25.S. M. Lee, K. S. Park, Y. C. Chai, Y. S. Park, J.M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. Kim, T. Frauenheim, Y. H. Lee, Synth. Met. 113, 209 (2000)
26.R. T. Yang, Carbon 38, 623 (2000)
27.J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 32, 435 (1999)
28.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
29.H. Dai, J.H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)
30.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
31.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L Cheung, and C. M. Lieber, Science 289, 94 (2000)
32.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
33.J. Kong, M. G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
34.X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2001)
35.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
36.Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001)
37.Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
38.A. P. Alivisatos, Science 271, 933 (1996)
39.F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 11, 632 (1999)
40.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z.G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
41.J. Niu, J. Sha, N. Zhang, Y. Ji, X. Ma, and D. Yang, Physica E 23, 1 (2004)
42.Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, J. Mater. Res. 16, 683 (2001)
43.J. J. Wu, T. C. Wong, and C. C. Yu, Adv. Mater. 14, 1643 (2002)
44.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
45.M. Paulose, O. K. Varghese, and C. A. Grimes, J. Nanosci. Nanotech. 3, 341 (2003)
46.S. H. Sun, G. W. Meng, M.G. Zhang, Y. F. Hao, X. R. Zhang, and L. D. Zhang, J. Phys. Chem. B 107, 13029 (2003)
47.K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 383, 380 (2004)
48.R. Ma and Y. Bando, Chem. Phys. Lett. 377, 177 (2003)
49.J. L. Elechiguerra, J. A. Manriquez, and M. J. Yacaman, Appl. Phys. A 79, 461 (2004)
50.B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
51.K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 376, 498 (2003)
52.Z. Zhang, Y. Zhao, and J. Liu, J. Phys.: Condens. Matter 15, L505 (2003)
53.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999)
54.J. L. Gole and J. D. Stout, W. L. Rauch, and Z. L. Wang, Appl. Phys. Lett. 76, 2346 (2000)
55.Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, Adv. Mater. 12, 1938 (2000)
56.Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, J. Crystal Growth 233, 803 (2001)
57.B. K. Teo, C. P. Li, X. H. Sun, N. B. Wong, and S. T. Lee, Inorg. Chem. 42, 6723 (2003)
58.Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G. Bai, and J. L. Gole, Appl. Phys. Lett. 77, 3349 (2000)
59.K. S. Wenger, D. Cornu, F. Chassagneux, T. Epicier, and P. Miele, J. Mater. Chem. 13, 3058 (2003)
60.F. L. Deepak, G. Gundiah, M. M. Seikh, A. Govindaraj, and C. N. R. Rao, J. Mater. Res. 19, 2216 (2004)
61.S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
62.S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
63.Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
64.M. Zacharias and P. M. Fauchet, J. Non-Cryst. Solids 227-230, 1058 (1998)
65.A. Margaryan, M.A. Piliavin, Germanate Glasses, Structure, Spectroscopy, and Properties, Artech House, Boston, MA, p. 135 (1993)
66.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
67.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
68.Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 317, 504 (2000)
69.Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, G. W. Meng, G. H. Li, and L. D. Zhang, Mater. Lett. 59, 416 (2005)
70.P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, and E. K. Suh, J. Chem. Phys. 121, 441 (2004)
71.X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 349, 210 (2001)
72.P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
73.Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991)
74.A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997)
75.J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
76.T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
77.Dunwei Wang, Ying-Lan Chang, Qian Wang, Lien Cao, Damon B. Farmer,Roy G. Gordan, and Hongjie Dai , J. Am. Chem. Soc.126,11602 (2004)
78.D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
79.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
80.X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
81.J. Hu, Y. Jiang, X. Meng, C. S. Lee, and S. T. Lee, Small 1, 429 (2005)
82.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
83.P.W. lin,W.M. Liao,David M.T. Kuo,and S.W. Lin. Appl. Phys. Lett. 85 9 2004
84.D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
85.Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
86.S. Kodambaka, J Tersoff, M.C.Reuter,F.M.Ross, Science 316, 4 (2007)
87.H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
88.T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
89.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
90.B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
91.Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
92.Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
93.G. Gu, M. Burghard, G. T. Kim, G. S. Dusberg, P. W. Chiu, V. Krstic, S. Roth, and W. Q. Han, Appl. Phys. Lett. 90, 5747 (2001)
94.Y. Hao, G. Meng, C. Ye, and L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)
95.G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal. 24, 137 (2003)
96.X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
97.C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
98.J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
99.M. Johnsson, Solid State Ionics 172, 365 (2004)
100.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
101.A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
102.K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
103.P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
104.Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
105.Wilson, Mickael, et al., Nanotechnology,2002
106.H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
107.Z. W. Pan, S. Dai, and D. H. Lowndes, Solid State Commun. 134, 251 (2005)
108.Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000)
109.B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, and D. Zhao, Adv. Mater. 15, 1370 (2003)
110.T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater. 15, 3518 (2003)
111.Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
112.K. M. Ryan, D. Erts, H. Olin, M. A. Morris, and J. D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
113.N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
114.Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
115.B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
116.C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
117.A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
118.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
119.C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
120.R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
121.R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
122.R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
123.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
124.M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
125.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
126.Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
127.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
128.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
129.Masaru Nagai, Electrochemical and Solid-State Lett. 10 (2) H43,(2007).
130.Seu Yi Li, Chia Ying Lee, Tesung Yuen Tseng, J. Crystal Growth 247 (2003) 357.
131.Hyoun Woo Kim ,Seung Hyun Shim, Jong Woo Lee, Physica E 37 (2007 163)
132.N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
133.T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
134.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
135.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
136.H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
137.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
138.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
139.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
140.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
141.Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
142.L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
143.L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
144.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
145.X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
146.Y. Yao, S. Fan, Materials Letters 61 (2007 177)
147.X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)
148.E. I. Givargizov, J. Crystal Growth 20, 217 (1973)
149.H. Kohno, and S. Takeda, Appl. Phys. Lett. 73, 3144 (1998)
150.K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278, 653 (1997)
151.汪建民等人, “材料分析”, 中國材料科學學會 (1998)
152.郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.5.
153.Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, Science 281, 973 (1998)
154.Q. Li, and C. Wang, Appl. Phys. Lett. 82, 1398 (2003)
155.Sze, S. M. Physics of Semiconductor Device; Wiley: NY ,(1981)
156.Konig, U; Schaffler, F. IEEE Electron Device Lett. (1993), 14, 205-207
157.Wang DW, PURE AND APPLIED CHEMISTRY 79 (1): 55-65 JAN 2007
158.D. Wang, H. Dai, Appl. Phys. A 85 217 (2006)
159.B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia, Jounal of Cluster Science 17 4 (2006)
160.Chui, C. O.;Baylor, S. R/; Triplett, B McIntyre, P. C;Sarawat, K.C. IEEE Electron Device Lett. 2002, 23,473-475
161.Wang, D. W.,Wang, Q., Javey,A.;Tu, R.;Dai, H.J.;Kim, H.;McIntyre, P.C.; Krishnamohan, T.; Saraswat, K.C. Appl. Phys. Lett. 2003,83,2432-2434
162.Y. Yao, F.H. li, S.T. Lee, Chem. Phys. Lett. 406 381 (2005)
163.S. Ge, K. Jian, X. Lu, Y. Chen, R. Wang, S. Fang, Adv. Mater. 17 56 (2005)
164.A.I. Hochbaum, R. Fan, R. He, P. Yang, Nano Lett. 5 457 (2005)
165.D.P Yu, Y.J. Xing, Q. L. Hang, Phys. E 9 305 (2001)
166.Kuiqing Peng, Juejun Hu, Yunjie Yan, Yin Wu, Hui Fang, Ying Xu, ShuitTong Lee, and Jing Zhu , Adv. Funct. Mater. 16, 387 (2006)
167.M. Morales, C.M. Lieber, Science 279 208 (1998)
168.S. Jin, Q. Li, C.S. Lee, Phys. Status Solidi A: Appl. Res. 188 R1. (2001)
169.Bohr-Ran Huang , Jung-Fu Hsu , Chien-Seng Huang, Diamond & Related Materials 14 ,2105 (2005)
170.J.Y. Yu, S.W. Chung, J.R. Heath, J. Phys. Chem., B 2000 11864. (2000)
171.S.-H. Li, X.-F. Zhu, Y.-P. Zhao, J. Phys.Chem. B 108 17032. (2004)
172.J.S. Wu, S. Dhara, C.T. Wu, K.H. Chen, Y.F. Chen, L.C. Chen, Adv. Mater. 14 1847. (2002)
173.Z.Q. Liu, S.S. Xie, L.F. Sun, D.S. Tang, W.Y. Zhou, C.Y. Wang, W. Liu, Y.B. Li, X.P. Zou, G. Wang, J. Mater. Res. 16 683. (2001)
174.M. Paulose, O.K. Varghese, C.A. Grimes, J. Nanosci. Nanotechnol. 3 341. (2003)
175.Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, L.D. Zhang, J. Mater. Chem. 12 651. (2002)
176.J.L.Elechiguerra, A. Camacho-Bragado, J. Manriquez, J.P. Zhou, M. Jose-Yacaman, Microsci. Microanal. 10 ,388. (2004)
177.D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, Appl. Phys. Lett. 73 ,3076. (1998)
178.H.-F. Zhang, C.-M. Wang, E.C. Buck, L.-S. Wang, Nano Lett. 3 ,577. (2003)
179.X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 336 53. (2001)
180.C.H. Liang, L.D. Zhang, G.W. Meng, Y.W. Wang, Z.Q. Chu, J. Non-cryst. Solids 277,63. (2000)
181.Z. Pan, S. Dai, D.B. Beach, D.H. Lowndes, Nano Lett. 3,1279. (2003)
182.Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, J. Am. Chem. Soc. 124,1817. (2002)
183.J.C. Wang, C.Z. Zhan, F.G. Li, Solid State Commun. 125 ,629. (2003)
184.Z. Zhang, G. Ramanath, P.M. Ajayan, D. Golberg, Y. Bando, Adv. Mater. 13 ,197. (2001)
185.R. Ma, Y. Bando, Chem. Phys. Lett. 377 ,177. (2003)
186.S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, L.D. Zhang, Solid State Commun. 128,287. (2003)
187.H. Takikawa, M. Yatsuki, T. Sakakibara, Jpn. J. Appl. Phys. 38 ,L401. (1999)
188.X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian, Chem. Mater. 13 ,1213. (2001)
189.J.Q. Hu, N.B.Wong Quan Li, C.S. Lee, S.T. Lee, Chem. Mater. 14,1216. (2002)
190.R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 ,89. (1964)
191.M.S. Gudiksen, L.J. Lauhon, J. Fang, D.C. Smith, C.M. Lieber, Nature 415 ,617. (2002)
192.Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H. Liang, J. Crystal growth 234 ,171. (2002)
193.Y. Wu, P. Yang, Adv. Mater. 13 ,520. (2001)
194.C.C. Chen, C.C. Yeh, Adv. Mater. 12 ,738. (2000)
195.Tobias Hanrath, Brain A. Korgel, J. Am. Chem. Soc. 124, 7 1424 (2001)
196.Chang-Beom Jin, Jee-Eun Yang, Moon-Ho Jo, App. Phys. Lett. 88,193105 (2006)
197.Tuan HY, Lee DC, Hanrath T, Korgel BA, Chem. Mater. 17 ,23,5705 (2005)
198.Sanjay Mathur, Hao Shen, Vladimir Sivakov, and Ulf Werner, Chem. Mater.16, 2449 (2004)
199.Manmeet Kaur, K.P. Muthe, S.K. Despande, Shipra Choudhury, J.B. Singh, Neetik Verma, S.K. Gupta, , J.V. Yakhmi, Journal of Crystal Growth 289, 670 (2006)
200.C.H. Xu , C.H. Woo , S.Q. Shi Chemical Physics Letters 399 ,62 (2004)
201.Y.K. Tseng, I.N. Lin, K.S. Liu, T.S. Lin and I.C. Chen, J. Mater. Res. 18, 714 (2003)
202.Y. Liu and Y. Liu, J. Phys. Chem. B 109, 20746(2005)
203.Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X.D. Bai, C. Tang and C. Gu, J. Phys. Chem. B 110, 796(2006)
204.C.H. Xu, C.H. Woo, S.Q. Shi, Superlattices and Microstructures 36,31(2004)
205.K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnol
206.Jun Nakamura, Zhaohui Zhang, Koji Sumitomo, Hiroo Omi, Toshio Ogino, Akiko Natori, Appl. Surface Science 212-213, 724-729 (2003)
207.T. Clausen, Th. Schmidt, J.I. Flege, A. Locatelli, T.O.Ments, S. Heu, F.Z.Guo, JFalta, Appl. Surface Science 252 5321 (2006)
208.N.D ZaKharov, P Werner, G Gerth, L.Schubert, L. Sokolov, U. G’o’sel, J. Crys. Grow. 290 6 (2006)
209.Adhikari H, Marshell A F, Chidsey CEDand Mclintyre P C Nano Lett. 6 318 (2006)
210.J.W. Dailey, J. Taraci, and T. Clement, J. App. Phys. 96 12 (2004)
211.C.Y. Ko, W.T. Lin, Nanotechnology 17 4464 2006
212.許廷瑞“Effects of water vapor and gold films on the growth of Ge-GeOX nanowires and Si1-XGeXOY nanowires” 國立成功大學材料工程研究所碩士論文,中華民國96年6月
213.Zhang Wai Pan, Zu Rong Dai, Chirs Ma, and Zhong L. Wang, J. Am. Chem. Soc. 124 ,8,1817 (2002)
214.C.Y. Ko, W.Y. Hsieh, T. J. Hsu,and W.T. Lin J. Mater. Res. 22 ,6 ,1618, (2007)
215.Jia-Yu Zhang and Xi-Mao Bao, Appl. Phys. Lett., Vol. 73, No. 13, 28 (1998)
216.P. Y. Su, M. Y. Lu, J. C. Hu, S. L. Cheng, and L. J. Chen, J. M. Liang, Appl. Phys. Lett. 87, 163101 2005
217.J. H. He, W. W. Wu, S. W. Lee, L. J. Chen,a! Y. L. Chueh, and L. J. Chou, Appl. Phys. Lett. 86, 263109 (2005)
218.Hyoun Woo Kim, Seung Hyun Shim,Applied Surface Science 253 3664, (2007)
219.J.Y. Zhang, X.M. Bao, Y.H. Ye, and X.L. Tan: Blue and redphotoluminescence from
Ge+ implanted SiO2 films and its multiple mechanism. Appl. Phys. Lett.,73 1790
(1998)
220.J.H. He, W.W. Wu, S.W. Lee, L.J. Chen, Y.L. Chueh, and L.J. Chou: Synthesis of blue-light-emitting Si1?xGex oxide nanowires. Appl. Phys. Lett 86 263109 (2005)
221.D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko,C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
222.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
223.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
224.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995)
225.X. Lu, T. Hanrath, K. P. Johnston, A. B. Korgel, Nano Lett. 3, 93 (2003)