簡易檢索 / 詳目顯示

研究生: 羅惟隆
Luo, Wei-long
論文名稱: 水蒸氣及銅膜對Ge-GeOx核殼奈米線及Si1-xGexOy奈米線生長之影響
Effects of water vapor and copper films on the growth of Ge-GeOx nanowires and Si1-xGexOy nanowires
指導教授: 林文台
lin, Wen-tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: 銅膜熱碳還原法
外文關鍵詞: nanowires, vls
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討於1100℃經由熱碳還原GeO2粉末在純氬氣以及含有水氣的氬氣氣氛中,不同銅膜厚度對於生長Ge-GeOx 奈米線以及Si1-xGexOy之影響。於純氬氣氣氛中所生長的Ge-GeOx 奈米線為VLS機制。Ge-GeOx 奈米線的成核數目隨著銅膜厚度由10-30nm變多,當銅膜厚度為50nm時Ge-GeOx 奈米線為叢聚狀。高氬氣流量也會幫助Ge-GeOx 奈米線之成核。含水氣的氬氣(濕氬氣)中更促進Ge-GeOx 奈米線的生長,Ge-GeOx 奈米線生長的量隨水量從0.5-2ml而增加。然而過多的水量會消耗更多的碳粉,使的Ge-GeOx 奈米線生長反而被抑制。在濕氬氣氛中生長的Ge-GeOx 奈米線包含VLS以及VS機制。水氣扮演氧化以及還原的角色。於純氬氣氣氛中以及濕氬氣氣氛中Ge-GeOx 奈米線的生長機制個別描述。
    在純氬氣以及濕氬氣中,CuSiGe催化位於矽基板周圍的紡錘狀以及羽毛狀紡錘狀以及羽毛狀之SiGeO奈米線的生長,生長機制皆為VLS。隨著銅膜厚度從50到10nm及導入水氣於氬氣中,SiGeO奈米線的形貌從羽毛狀變成紡錘狀,此結果似乎與羽毛狀頂端之球狀CuSiGe中Si/Ge比例比紡錘狀低有關。在濕氬氣中,抑制SiGeO奈米線藉由氫原子還原成Ge-SiGeO 核殼奈米線導因於動力效應。

    Effects of Cu films on the growth of Ge-GeOx core-shell nanowires (Ge-GeOx NWs) and Si1-xGexOy nanowires (SiGeONWs) on Si substrates in dry Ar and moist Ar, respectively, via the carbothermal reduction of GeO2 powders at 1100℃ were studied. In dry Ar the growth of Ge-GeOx NWs follows the vapor-liquid-solid (VLS) process. The nuclei of Ge-GeOx NW increased with the thickness of Cu films in the range of 10-30 nm. With the Cu films 50 nm thick the Ge-GeOx NWs agglomerated. Higher Ar flow rate also enhanced the nucleation of Ge-GeOx NWs. In moist Ar the growth of Ge-GeOx NWs was further enhanced and their amount increased with the volume of water in the range of 0.5-2 ml. However, more water degraded the growth of Ge-GeOx NWs because of the exhaustion of much graphite powders. The growth of Ge-GeOx NWs follows both VLS and vapor-solid (VS) processes. The water vapor served as the role of oxidizer and reducer. The mechanisms for the growth of Ge-GeOx NWs in dry Ar and moist Ar are discussed, respectively.
    The CuSiGe-catalyzed growth of spindle- and featherlike SiGeONW assemblies in dry Ar and moist Ar, following the VLS process, occurred on the periphery of the Si substrates. With decreasing the thickness of Cu films from 50 to 10nm and introducing the water vapor into flowing Ar , the morphology of SiGeONWs assemblies changed from featherlike to the spindlelike. These results seem to be concened with the smaller Si/Ge ratio of the CuSiGe spheroid on the tops of featherlike assemblies than that of spindelike ones. In moist Ar the inhibition of the reduction of SiGeONWs by atomic hydrogen to form Ge-SiGeO core-shell nanowires may be due to the kinetic effect.

    中文摘要---------------------------------------------------Ⅰ 英文摘要---------------------------------------------------Ⅱ 誌謝感言---------------------------------------------------Ⅳ 本文目錄---------------------------------------------------Ⅴ 圖目錄-----------------------------------------------------Ⅷ 第一章 奈米材料 ----------------------------------------- 1 1.1前言---------------------------------------------------1 1.2量子尺寸效應 ------------------------------------------2 1.3奈米表面效應 ------------------------------------------3 1.4一維奈米材料-------------------------------------------4 第二章 基本理論 ------------------------------------------ -7 2.1文獻回顧-----------------------------------------------7 2.1.1奈米線製作成技術-----------------------------------7 化學氣相沉積(chemical vapor deposition)------------7 Solvothermal法---------------------------------------9 球磨法 (ball milling)--------------------------------10 電漿電弧法 (plasma arcing)---------------------------10 雷射蒸鍍(laser ablation)---------------------------10 熱蒸鍍(thermal evaporation)------------------------10 熱碳還原(carbothermal reduction)-------------------11 模板輔助(template-assisted)------------------------12 溶膠-凝膠法(sol-gel)-------------------------------12 2.1.2 奈米線生長機制------------------------------------12 Vapor-Liquid-Solid(VLS)----------------------------12 Oxide-Assisted Growth(OAG)-------------------------16 Vapor-Solid(VS)------------------------------------17 Solution-Liquid-Solid--------------------------------18 2.2 儀器原理---------------------------------------------19 2.2.1 掃瞄式電子顯微鏡(SEM)--------------------------19 2.2.2 掠角X光繞射儀(GID)----------------------------20 2.2.3 穿透式電子顯微鏡(TEM)--------------------------22 2.2.4 X光能量散佈分析儀(EDS)------------------------22 2.2.5 陰極激發光譜儀 (CL)------------------------------23 2.3 研究動機--------------------------------------------24 第三章 實驗步驟與方法--------------------------------------28 3.1 實驗裝置及流程--------------------------------------28 3.2 實驗分析--------------------------------------------29 3.2.1掃瞄式電子顯微鏡分析----------------------------29 3.2.2 低掠角X光繞射分析----------------------------- 30 3.2.3 穿透式電子顯微鏡分析----------------------------30 3.2.4陰極發光光譜儀分析-------------------------------30 第四章 結果與討論-------------------------------------------31 4-1 Ge-GeOx NWs 之生長------------------------------------31 4-1-1 銅膜厚度之影響-----------------------------------31 4-1-2 流量對Ge-GeOx NW生長之影響----------------------34 4-1-3 水氣對Ge-GeOx NWs生長的影響---------------------34 4-2 熱碳還原GeO2粉末在Cu-coated Si基板上生長 SiGeONWs不同參數的影響…------------------------------37 4-3 SiGeONWs 不會生成Ge-GeOx NWs的原因------------------39 4-4 Cathodeluminescence (CL)-----------------------------39 第五章 結論-------------------------------------------------40 參考文獻----------------------------------------------------42 表4-1 Ge-GeOx NWs 頂端顆粒組成百分比------------------------51 表4-2 Ge-GeOx NWs 隨銅膜厚度、水量改變之直徑----------------51 表4-3 Ge-GeOx NWs 隨銅膜厚度與流量改變之直徑----------------52 圖2- 1 VLS示意圖-----------------------------------------------------------------53 圖2-2(a)用Au做催化劑生長Ge奈米線示意圖(b)Au-Ge相圖-------53 圖2-2(c)以TEM即時觀察影像圖-------------------------------54 圖2-3 以OAG合成Si奈米線的成核與成長示意圖--------------------- ---54 圖2- 4 SiOx NWs銅膜厚度60nm,銅膜會變成cluster-like(叢聚)的 結構,且SiOx的核會變成塊狀(agglomeration)---------------------55 圖2-5 VLS機制和Solution-Liquid-Solid機制的比較------------55 圖2-6 SFLS方法反應機構示意圖-------------------------------56 圖3-1 高溫爐與試片擺設位置示意圖----------------------------56 圖3-2 試片與粉末擺設位置示意圖------------------------------57 圖4-1(a) 1100℃ GeO2/C=1持溫 60min,在鍍銅基板(Cu厚度=30nm)之 Ge-GeOxNWs SEM影像 (b) 1100℃ GeO2/C=1持溫60min, Ar=100sccm,純Si基板SEM影像-------------------------------------------58 圖4-2 圖4-1(a)之XRD分析-----------------------------------58 圖4-3 1100℃ GeO2/C=1持溫60min Ar=300sccm,銅膜厚度為30nm Ge-GeOx NWs TEM影像右上角為 Ge-GeOx NWs繞射圖--------------59 圖4-4 對圖4-3奈米線外殼(標記*處)做EDS分析----------------59 圖4-5 銅膜厚度30nm Ar=200sccm Ge-GeOx NWs橫截面生長情形------------------------------------------------------------59 圖4-6 1100℃ GeO2/C=1持溫60min Ar=100sccm,銅膜厚度為10nm Ge-GeOx NWs TEM影像,左圖為頂端球狀顆粒EDS分析-------------60 圖4-7 1100℃ GeO2/C=1持溫60min Ar=300sccm,銅膜厚度為30nm Ge-GeOx NWs TEM影像,左圖為頂端球狀顆粒EDS分析-------------60 圖4-8 1100℃ GeO2/C=1持溫60min Ar=300sccm,銅膜厚度為50nm Ge-GeOx NWs TEM影像,左圖為頂端球狀顆粒EDS分析-------------60 圖4-9(a) Ar=100sccm Cu=10nm SEM低倍影像(1KX) (b) Ar=100sccm Cu=10nm SEM高倍影像(5KX)------------------------------------61 圖4-10(a) Ar=100sccm Cu=30nm SEM低倍影像(1KX) (b) Ar=100sccm Cu=30nm SEM高倍影像(5KX)-------------------------------------61 圖4-11(a) Ar=100sccm Cu=50nm SEM低倍影像(1KX) 圖4-11(b) Ar=100sccm Cu=50nm SEM高倍影像(5KX)-------------------------62 圖4-11(C) Ar=100sccm Cu=50nm叢聚SEM低倍影像(100X)----------62 圖4-12(a) Ar=200sccm Cu=10nm SEM低 倍影像(1KX) (b) Ar=200sccm Cu=10nm SEM高倍影像(5KX)------------------------------------63 圖4-13(a) Ar=200sccm Cu=30nm SEM低倍影像(1KX) (b) Ar=200sccm Cu=30nm SEM高倍影像(5KX)------------------------------------63 圖4-14(a) Ar=300sccm Cu=10nm SEM低倍影像(1KX) (b) Ar=300sccm Cu=10nm SEM高倍影像(5KX)------------------------------------64 圖4-15(a) Ar=300sccm Cu=30nm SEM低倍影像(1KX) (b) Ar=300sccm Cu=30nm SEM高倍影像(5KX)------------------------------------64 圖4-16(a)Ar=200sccm Cu=10nm SEM低倍影像(1KX) (b) Ar=200sccm Cu=10nm SEM高倍影像(5KX)------------------------------------65 圖4-17(a) H2O=0.5ml Ar=200sccm 銅膜厚度10nm Ge-GeOx NWs 低倍SEM影像(1KX) (b) H2O=0.5ml Ar=200sccm銅膜厚度10nm Ge-GeOx NWs 高倍SEM影像(5KX)------------------------------------------------65 圖4-18(a) H2O=1ml Ar=200sccm 銅膜厚度10nm Ge-GeOx NWs 低倍SEM影像(1KX) (b) H2O=1ml Ar=200sccm 銅膜厚度10nm Ge-GeOx NWs 高倍SEM影像(5KX-------------------------------------------------66 圖4-19(a) H2O=2ml Ar=200sccm 銅膜厚度10nm Ge-GeOx NWs 低倍SEM影像(1KX) (b) H2O=2ml Ar=200sccm 銅膜厚度10nm Ge-GeOx NWs 高倍SEM影像(5KX)------------------------------------------------66 圖4-20水量 2ml 銅膜厚度10nm Ar=200sccm Ge-GeOx NWs橫截面影像------------------------------------------------------------67 圖4-21(a) H2O=2ml Ar=200sccm 銅膜厚度10nm Ge-GeOxNWs頂端球狀TEM影像----------------------------------------------------68 圖4-21(b) H2O=2ml Ar=200sccm銅膜厚度10nm Ge-GeOxNWs頂端球狀TEM影像--------------------------------------------------------68 圖4-22 (a)H2O=3ml Ar=200sccm Cu=10nm Ge-GeOxNWs根部生長情形-69 圖4-23 (a)無水氣Cu=10nm Ar=200sccm Ge-GeOxNWs根部生長情形—69 圖4-24(a) H2O=3ml Ar=200sccm Ge-GeOxNWs 低倍SEM影像(1KX) (b)H2O=3ml Ar=200sccm Ge-GeOxNWs 高倍SEM影像(5KX)-----------70 圖4-25(a) H2O=4ml Ar=200sccm Ge-GeOxNWs 低倍SEM影像(1KX) (b) H2O=4ml Ar=200sccm Ge-GeOxNWs 高倍SEM影像(5KX)--------------70 圖4-26(a) Cu=30nm Ar=200sccm O2=0.5% Ge-GeOxNWs 低倍SEM影像(1KX) (b) Cu=30nm Ar=200sccm O2=0.5% Ge-GeOxNWs 高倍SEM影像(5KX)—71 圖4-27(a) Cu=30nm Ar=200sccm O2=1% Ge-GeOxNWs 低倍SEM影像(1KX) (b) Cu=30nm Ar=200sccm O2=1% Ge-GeOxNWs 高倍SEM影像(5KX)----71 圖4-28(a) Cu=30nm Ar=200sccm O2=2% Ge-GeOxNWs 低倍SEM影像(1KX) (b) Cu=30nm Ar=200sccm O2=2% Ge-GeOxNWs 高倍SEM影像(5KX)----71 圖4-29 (a) Ar=100sccm Cu=10nm SEM低倍影像(1KX) (b) Ar=100sccm Cu=10nm SEM高倍影像(5KX)------------------------------------72 圖4-30(a)Ar=200sccm Cu=10nm SEM低倍影像(1KX) (b) Ar=200sccm Cu=10nm SEM高倍影像(5KX)------------------------------------72 圖4-31(a) Ar=300sccm Cu=10nm SEM低倍影像(b) Ar=300sccm Cu=10nm SEM高倍影像(1KX) (5KX)--------------------------------------72 圖4-32 (a)Ar=100sccm Cu=30nm SEM低倍影像(1KX) (b) Ar=100sccm Cu=30nm SEM高倍影像(5KX)------------------------------------73 圖4-33(a) Ar=200sccm Cu=30nm SEM低倍影像(1KX) (b) Ar=200sccm Cu=30nm SEM高倍影像(5KX)------------------------------------73 圖4-34(a) Ar=300sccm Cu=30nm SEM低倍影像(1KX) (B) Ar=300sccm Cu=30nm SEM高倍影像(5KX)------------------------------------73 圖4-35 Ar=100sccm 10nm SiGeONWs SEM影像(1KX)----------------74 圖4-36 Ar=100sccm 30nm SiGeONWs SEM影像(1KX)----------------74 圖4-37 Ar=100sccm 50nm SiGeONWs SEM影像(1KX)----------------74 圖4-38 Ar=200sccm 10nm SiGeONWs SEM影像(1KX)----------------75 圖4-39 Ar=200sccm 30nm SiGeONWs SEM影像(1KX)----------------75 圖4-40 Ar=200sccm 50nm SiGeONWs SEM影像(1KX) ----------------75 圖4-41 Ar=300sccm 10nm SiGeONWs SEM影像(1KX) ----------------76 圖4-42 Ar=300sccm 30nm SiGeONWs SEM影像(1KX) ----------------76 圖4-43 Ar=300sccm 50nm SiGeONWs SEM影像(1KX) ----------------76 圖4-44 沒有水氣Cu=30nm Ar=200sccm SiGeONWs TEM影像-------77 圖4-45 SiGeONWs TEM影像 Cu=30nm Ar=200sccm ----------------77 圖4-46 銅膜厚度為10nm Ar=200sccm所生長之SiGeONWs SEM影像—78 圖4-47 銅膜厚度為30nm Ar=200sccm所生長之SiGeONWs SEM影像—78 圖4-48 銅膜厚度為50nm Ar=200sccm所生長之SiGeONWs SEM影像—78 圖4-49 Ar=200sccm 10nm H2O=0.5ml SiGeONWs SEM影像(1KX)------79 圖4-50 Ar=200sccm 10nm H2O=1ml SiGeONWs SEM影像(1KX)--------79 圖4-51 Ar=200sccm 10nm H2O=2ml SiGeONWs SEM影像(1KX)--------79 圖4-52(a) Cu=30nm SiGeONWs(b)對應的CL影像(c) 對應圖4-46(b)的CL光譜------------------------------------------------------80 圖4-53(a) Cu=10nm H2O=2ml SiGeONWs圖4-53(b)對應之CL影像(c)對應圖4-47(b)之CL光譜----------------------------------------81 圖4-54 試片黑色區為SiGeONWs生長區域,而Ge-GeOx NWs生長區域為 白色區。-----------------------------------------------------82 圖4-55 Si-Cu phase diagram----------------------------------83 圖4-56 Ge-Cu phase diagram----------------------------------83

    1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
    2.馬振基, “奈米材料科技原理與應用”, 全華科技 (2003)
    3.盧永坤, “奈米科技概論”,滄海書局(2005)
    4.B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)
    5.張立德, “奈米材料”, 五南出版社 (2002)
    6.W. Barthlott and C. Neinhuis, Planta 202, 1 (1997)
    7.C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997)
    8.R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962)
    9.R. Eisberg and R. Resnick, “Quantum Physics of atoms, molecules, solids, nuclei, and particles”, 2nd ed., New York:Wiley, pp.199 (1985)
    10.陳貴賢, 吳季珍, “物理雙月刊”, 23, 609 (2001)
    11.S. Iijima, Nature 354, 56 (1991)
    12.N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995)
    13.M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Romas, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 259, 568 (1996)
    14.K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
    15.D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
    16.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
    17.W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
    18.Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, C. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
    19.H. Dai, E. W. Wang, Y. Z. Lu, S. S. Fang, and C. M. Lieber, Nature 375, 769 (1995)
    20.L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
    21.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
    22.Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
    23.Y. Saito, S. Uemura, Carbon 38, 169 (2000)
    24.M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami,H.Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
    25.S. M. Lee, K. S. Park, Y. C. Chai, Y. S. Park, J.M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. Kim, T. Frauenheim, Y. H. Lee, Synth. Met. 113, 209 (2000)
    26.R. T. Yang, Carbon 38, 623 (2000)
    27.J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 32, 435 (1999)
    28.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
    29.H. Dai, J.H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)
    30.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
    31.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L Cheung, and C. M. Lieber, Science 289, 94 (2000)
    32.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
    33.J. Kong, M. G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
    34.X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2001)
    35.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
    36.Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001)
    37.Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
    38.A. P. Alivisatos, Science 271, 933 (1996)
    39.F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 11, 632 (1999)
    40.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z.G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
    41.J. Niu, J. Sha, N. Zhang, Y. Ji, X. Ma, and D. Yang, Physica E 23, 1 (2004)
    42.Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, J. Mater. Res. 16, 683 (2001)
    43.J. J. Wu, T. C. Wong, and C. C. Yu, Adv. Mater. 14, 1643 (2002)
    44.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
    45.M. Paulose, O. K. Varghese, and C. A. Grimes, J. Nanosci. Nanotech. 3, 341 (2003)
    46.S. H. Sun, G. W. Meng, M.G. Zhang, Y. F. Hao, X. R. Zhang, and L. D. Zhang, J. Phys. Chem. B 107, 13029 (2003)
    47.K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 383, 380 (2004)
    48.R. Ma and Y. Bando, Chem. Phys. Lett. 377, 177 (2003)
    49.J. L. Elechiguerra, J. A. Manriquez, and M. J. Yacaman, Appl. Phys. A 79, 461 (2004)
    50.B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
    51.K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 376, 498 (2003)
    52.Z. Zhang, Y. Zhao, and J. Liu, J. Phys.: Condens. Matter 15, L505 (2003)
    53.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999)
    54.J. L. Gole and J. D. Stout, W. L. Rauch, and Z. L. Wang, Appl. Phys. Lett. 76, 2346 (2000)
    55.Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, Adv. Mater. 12, 1938 (2000)
    56.Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, J. Crystal Growth 233, 803 (2001)
    57.B. K. Teo, C. P. Li, X. H. Sun, N. B. Wong, and S. T. Lee, Inorg. Chem. 42, 6723 (2003)
    58.Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G. Bai, and J. L. Gole, Appl. Phys. Lett. 77, 3349 (2000)
    59.K. S. Wenger, D. Cornu, F. Chassagneux, T. Epicier, and P. Miele, J. Mater. Chem. 13, 3058 (2003)
    60.F. L. Deepak, G. Gundiah, M. M. Seikh, A. Govindaraj, and C. N. R. Rao, J. Mater. Res. 19, 2216 (2004)
    61.S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
    62.S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
    63.Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
    64.M. Zacharias and P. M. Fauchet, J. Non-Cryst. Solids 227-230, 1058 (1998)
    65.A. Margaryan, M.A. Piliavin, Germanate Glasses, Structure, Spectroscopy, and Properties, Artech House, Boston, MA, p. 135 (1993)
    66.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
    67.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
    68.Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 317, 504 (2000)
    69.Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, G. W. Meng, G. H. Li, and L. D. Zhang, Mater. Lett. 59, 416 (2005)
    70.P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, and E. K. Suh, J. Chem. Phys. 121, 441 (2004)
    71.X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 349, 210 (2001)
    72.P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
    73.Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991)
    74.A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997)
    75.J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
    76.T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
    77.Dunwei Wang, Ying-Lan Chang, Qian Wang, Lien Cao, Damon B. Farmer,Roy G. Gordan, and Hongjie Dai , J. Am. Chem. Soc.126,11602 (2004)
    78.D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
    79.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
    80.X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
    81.J. Hu, Y. Jiang, X. Meng, C. S. Lee, and S. T. Lee, Small 1, 429 (2005)
    82.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
    83.P.W. lin,W.M. Liao,David M.T. Kuo,and S.W. Lin. Appl. Phys. Lett. 85 9 2004
    84.D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
    85.Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
    86.S. Kodambaka, J Tersoff, M.C.Reuter,F.M.Ross, Science 316, 4 (2007)
    87.H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
    88.T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
    89.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
    90.B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
    91.Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
    92.Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
    93.G. Gu, M. Burghard, G. T. Kim, G. S. Dusberg, P. W. Chiu, V. Krstic, S. Roth, and W. Q. Han, Appl. Phys. Lett. 90, 5747 (2001)
    94.Y. Hao, G. Meng, C. Ye, and L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)
    95.G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal. 24, 137 (2003)
    96.X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
    97.C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
    98.J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
    99.M. Johnsson, Solid State Ionics 172, 365 (2004)
    100.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
    101.A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
    102.K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
    103.P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
    104.Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
    105.Wilson, Mickael, et al., Nanotechnology,2002
    106.H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
    107.Z. W. Pan, S. Dai, and D. H. Lowndes, Solid State Commun. 134, 251 (2005)
    108.Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000)
    109.B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, and D. Zhao, Adv. Mater. 15, 1370 (2003)
    110.T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater. 15, 3518 (2003)
    111.Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
    112.K. M. Ryan, D. Erts, H. Olin, M. A. Morris, and J. D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
    113.N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
    114.Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
    115.B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
    116.C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
    117.A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
    118.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
    119.C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
    120.R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
    121.R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
    122.R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
    123.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    124.M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
    125.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
    126.Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
    127.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
    128.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
    129.Masaru Nagai, Electrochemical and Solid-State Lett. 10 (2) H43,(2007).
    130.Seu Yi Li, Chia Ying Lee, Tesung Yuen Tseng, J. Crystal Growth 247 (2003) 357.
    131.Hyoun Woo Kim ,Seung Hyun Shim, Jong Woo Lee, Physica E 37 (2007 163)
    132.N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
    133.T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
    134.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
    135.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
    136.H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
    137.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
    138.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
    139.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
    140.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
    141.Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
    142.L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
    143.L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
    144.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
    145.X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
    146.Y. Yao, S. Fan, Materials Letters 61 (2007 177)
    147.X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)
    148.E. I. Givargizov, J. Crystal Growth 20, 217 (1973)
    149.H. Kohno, and S. Takeda, Appl. Phys. Lett. 73, 3144 (1998)
    150.K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278, 653 (1997)
    151.汪建民等人, “材料分析”, 中國材料科學學會 (1998)
    152.郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.5.
    153.Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, Science 281, 973 (1998)
    154.Q. Li, and C. Wang, Appl. Phys. Lett. 82, 1398 (2003)
    155.Sze, S. M. Physics of Semiconductor Device; Wiley: NY ,(1981)
    156.Konig, U; Schaffler, F. IEEE Electron Device Lett. (1993), 14, 205-207
    157.Wang DW, PURE AND APPLIED CHEMISTRY 79 (1): 55-65 JAN 2007
    158.D. Wang, H. Dai, Appl. Phys. A 85 217 (2006)
    159.B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia, Jounal of Cluster Science 17 4 (2006)
    160.Chui, C. O.;Baylor, S. R/; Triplett, B McIntyre, P. C;Sarawat, K.C. IEEE Electron Device Lett. 2002, 23,473-475
    161.Wang, D. W.,Wang, Q., Javey,A.;Tu, R.;Dai, H.J.;Kim, H.;McIntyre, P.C.; Krishnamohan, T.; Saraswat, K.C. Appl. Phys. Lett. 2003,83,2432-2434
    162.Y. Yao, F.H. li, S.T. Lee, Chem. Phys. Lett. 406 381 (2005)
    163.S. Ge, K. Jian, X. Lu, Y. Chen, R. Wang, S. Fang, Adv. Mater. 17 56 (2005)
    164.A.I. Hochbaum, R. Fan, R. He, P. Yang, Nano Lett. 5 457 (2005)
    165.D.P Yu, Y.J. Xing, Q. L. Hang, Phys. E 9 305 (2001)
    166.Kuiqing Peng, Juejun Hu, Yunjie Yan, Yin Wu, Hui Fang, Ying Xu, ShuitTong Lee, and Jing Zhu , Adv. Funct. Mater. 16, 387 (2006)
    167.M. Morales, C.M. Lieber, Science 279 208 (1998)
    168.S. Jin, Q. Li, C.S. Lee, Phys. Status Solidi A: Appl. Res. 188 R1. (2001)
    169.Bohr-Ran Huang , Jung-Fu Hsu , Chien-Seng Huang, Diamond & Related Materials 14 ,2105 (2005)
    170.J.Y. Yu, S.W. Chung, J.R. Heath, J. Phys. Chem., B 2000 11864. (2000)
    171.S.-H. Li, X.-F. Zhu, Y.-P. Zhao, J. Phys.Chem. B 108 17032. (2004)
    172.J.S. Wu, S. Dhara, C.T. Wu, K.H. Chen, Y.F. Chen, L.C. Chen, Adv. Mater. 14 1847. (2002)
    173.Z.Q. Liu, S.S. Xie, L.F. Sun, D.S. Tang, W.Y. Zhou, C.Y. Wang, W. Liu, Y.B. Li, X.P. Zou, G. Wang, J. Mater. Res. 16 683. (2001)
    174.M. Paulose, O.K. Varghese, C.A. Grimes, J. Nanosci. Nanotechnol. 3 341. (2003)
    175.Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, L.D. Zhang, J. Mater. Chem. 12 651. (2002)
    176.J.L.Elechiguerra, A. Camacho-Bragado, J. Manriquez, J.P. Zhou, M. Jose-Yacaman, Microsci. Microanal. 10 ,388. (2004)
    177.D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, Appl. Phys. Lett. 73 ,3076. (1998)
    178.H.-F. Zhang, C.-M. Wang, E.C. Buck, L.-S. Wang, Nano Lett. 3 ,577. (2003)
    179.X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 336 53. (2001)
    180.C.H. Liang, L.D. Zhang, G.W. Meng, Y.W. Wang, Z.Q. Chu, J. Non-cryst. Solids 277,63. (2000)
    181.Z. Pan, S. Dai, D.B. Beach, D.H. Lowndes, Nano Lett. 3,1279. (2003)
    182.Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, J. Am. Chem. Soc. 124,1817. (2002)
    183.J.C. Wang, C.Z. Zhan, F.G. Li, Solid State Commun. 125 ,629. (2003)
    184.Z. Zhang, G. Ramanath, P.M. Ajayan, D. Golberg, Y. Bando, Adv. Mater. 13 ,197. (2001)
    185.R. Ma, Y. Bando, Chem. Phys. Lett. 377 ,177. (2003)
    186.S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, L.D. Zhang, Solid State Commun. 128,287. (2003)
    187.H. Takikawa, M. Yatsuki, T. Sakakibara, Jpn. J. Appl. Phys. 38 ,L401. (1999)
    188.X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian, Chem. Mater. 13 ,1213. (2001)
    189.J.Q. Hu, N.B.Wong Quan Li, C.S. Lee, S.T. Lee, Chem. Mater. 14,1216. (2002)
    190.R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 ,89. (1964)
    191.M.S. Gudiksen, L.J. Lauhon, J. Fang, D.C. Smith, C.M. Lieber, Nature 415 ,617. (2002)
    192.Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H. Liang, J. Crystal growth 234 ,171. (2002)
    193.Y. Wu, P. Yang, Adv. Mater. 13 ,520. (2001)
    194.C.C. Chen, C.C. Yeh, Adv. Mater. 12 ,738. (2000)
    195.Tobias Hanrath, Brain A. Korgel, J. Am. Chem. Soc. 124, 7 1424 (2001)
    196.Chang-Beom Jin, Jee-Eun Yang, Moon-Ho Jo, App. Phys. Lett. 88,193105 (2006)
    197.Tuan HY, Lee DC, Hanrath T, Korgel BA, Chem. Mater. 17 ,23,5705 (2005)
    198.Sanjay Mathur, Hao Shen, Vladimir Sivakov, and Ulf Werner, Chem. Mater.16, 2449 (2004)
    199.Manmeet Kaur, K.P. Muthe, S.K. Despande, Shipra Choudhury, J.B. Singh, Neetik Verma, S.K. Gupta, , J.V. Yakhmi, Journal of Crystal Growth 289, 670 (2006)
    200.C.H. Xu , C.H. Woo , S.Q. Shi Chemical Physics Letters 399 ,62 (2004)
    201.Y.K. Tseng, I.N. Lin, K.S. Liu, T.S. Lin and I.C. Chen, J. Mater. Res. 18, 714 (2003)
    202.Y. Liu and Y. Liu, J. Phys. Chem. B 109, 20746(2005)
    203.Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X.D. Bai, C. Tang and C. Gu, J. Phys. Chem. B 110, 796(2006)
    204.C.H. Xu, C.H. Woo, S.Q. Shi, Superlattices and Microstructures 36,31(2004)
    205.K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnol
    206.Jun Nakamura, Zhaohui Zhang, Koji Sumitomo, Hiroo Omi, Toshio Ogino, Akiko Natori, Appl. Surface Science 212-213, 724-729 (2003)
    207.T. Clausen, Th. Schmidt, J.I. Flege, A. Locatelli, T.O.Ments, S. Heu, F.Z.Guo, JFalta, Appl. Surface Science 252 5321 (2006)
    208.N.D ZaKharov, P Werner, G Gerth, L.Schubert, L. Sokolov, U. G’o’sel, J. Crys. Grow. 290 6 (2006)
    209.Adhikari H, Marshell A F, Chidsey CEDand Mclintyre P C Nano Lett. 6 318 (2006)
    210.J.W. Dailey, J. Taraci, and T. Clement, J. App. Phys. 96 12 (2004)
    211.C.Y. Ko, W.T. Lin, Nanotechnology 17 4464 2006
    212.許廷瑞“Effects of water vapor and gold films on the growth of Ge-GeOX nanowires and Si1-XGeXOY nanowires” 國立成功大學材料工程研究所碩士論文,中華民國96年6月
    213.Zhang Wai Pan, Zu Rong Dai, Chirs Ma, and Zhong L. Wang, J. Am. Chem. Soc. 124 ,8,1817 (2002)
    214.C.Y. Ko, W.Y. Hsieh, T. J. Hsu,and W.T. Lin J. Mater. Res. 22 ,6 ,1618, (2007)
    215.Jia-Yu Zhang and Xi-Mao Bao, Appl. Phys. Lett., Vol. 73, No. 13, 28 (1998)
    216.P. Y. Su, M. Y. Lu, J. C. Hu, S. L. Cheng, and L. J. Chen, J. M. Liang, Appl. Phys. Lett. 87, 163101 2005
    217.J. H. He, W. W. Wu, S. W. Lee, L. J. Chen,a! Y. L. Chueh, and L. J. Chou, Appl. Phys. Lett. 86, 263109 (2005)
    218.Hyoun Woo Kim, Seung Hyun Shim,Applied Surface Science 253 3664, (2007)
    219.J.Y. Zhang, X.M. Bao, Y.H. Ye, and X.L. Tan: Blue and redphotoluminescence from
    Ge+ implanted SiO2 films and its multiple mechanism. Appl. Phys. Lett.,73 1790
    (1998)
    220.J.H. He, W.W. Wu, S.W. Lee, L.J. Chen, Y.L. Chueh, and L.J. Chou: Synthesis of blue-light-emitting Si1?xGex oxide nanowires. Appl. Phys. Lett 86 263109 (2005)
    221.D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko,C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
    222.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    223.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
    224.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995)
    225.X. Lu, T. Hanrath, K. P. Johnston, A. B. Korgel, Nano Lett. 3, 93 (2003)

    下載圖示 校內:2008-07-13公開
    校外:2008-07-13公開
    QR CODE