| 研究生: |
陳俊麒 Chen, Jyun-Ci |
|---|---|
| 論文名稱: |
基於外擾轉矩估測之整合式速度與轉矩控制於復健踩車系統之應用 Integration of Disturbance-Observer-Based Velocity and Torque Control for Rehabilitating Cycle Ergometer |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 復健踩車系統 、閉迴路觀測器 、速度控制 、轉矩控制 、阻助力策略控制整合 |
| 外文關鍵詞: | Cycle ergometer, Luenburger observer, Velocity control, Torque control, Resistive and assisted strategy design integration |
| 相關次數: | 點閱:127 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用外擾轉矩之估測技術,整合於復健踩車系統之主被動模式控制,並提出一具有自動化程序復健功能的下肢復健踩車系統。首先,基於完整系統識別所得之踩車系統數學模型建立閉迴路觀測器,該觀測器主要用於估測馬達及飛輪之轉動速度與測試者施加之外擾轉矩。接著,在主被動模式控制之設計上,採用根軌跡法設計被動模式所需之速度控制器,以提供穩定的訓練速度;同時,考量系統為高度人機互動之系統,本研究利用觀測器估測之外擾轉矩,提出主動模式之阻助力切換控制策略,並將此策略整合於被動模式所建構之速度控制架構中,使其具有隨外擾轉矩產生對應之阻力及定阻力的人機互動感覺回饋,藉此符合主動模式之訓練所需。再者,基於外擾轉矩與被動模式相互切換,使馬達得以提供適當的助力與阻力,實現本研究所設計之復健踩車系統。
The study is aimed at developing the control approach of a cycle ergometer for lower-limb rehabilitation. According to the characteristics, obtained by the system identification, of the cycle ergometer system incorporating the transmission belt, a practical implementation of Luenburger observer is proposed to realize velocity and torque control. The proposed observer is featured with that the motor velocity, flywheel velocity and disturbance torque of flywheel could be estimated without torque sensor or load cell, simultaneously. Consequently, the user input torque could be detected by the proposed observer. Consider the human-machine interaction of the cycle ergometer, the resistive and assisted strategy based on the estimated disturbance is integrated into the velocity and torque controller. Simulations and experimental results are presented to validate the feasibility of the proposed control system. Eventually, the rehabilitating function of passive and active modes was achieved by using the integration of disturbance- observer-based velocity and torque control.
[1]C. H. Lai, W. H. Chang, W. P. Chan, C.W. Peng, L. K. Shen, J. J. Chen, and S. C. Chen, “Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury,” J Rehabil Med, vol. 42, no. 2, pp. 150-154, 2010.
[2]D. Karnopp, “Computer Simulation of Stick-slip Friction in Mechanical Dynamic System,” Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, vol. 107, no. 1, pp. 100-103, 1985.
[3]D. A. Brown, and S. A. Kautz. “Increased workload enhances force output during pedaling exercise in persons with poststroke heiplegia,” Stroke, vol. 29, no. 3, pp. 598-606, 1998.
[4]E. George, Danaher Corporation, “Observers in control systems a practical guide,” Acadimic press Elsevier Science (USA), 2007.
[5]F. Molteni, “Metrological characterization of a cycle ergometer to optimise the cycling induced by FES on patients with stroke,” Medical Engineering & Physics, vol. 32, no. 4, pp. 339-348, 2010.
[6]G. Mimmi, C. Rottenbacher, G. Bonandrini, “Pedalling Strength Analysis in Pathological and Non-pathological Subjects on Cycle ergometer Instrumented with Three components Pedals,” Proceedings of 12th IFToMM World Congress, Besançon, France, 2007.
[7]G. Ellis, and Z. Gao, ”Cures for low-frequency mechanical resonance in industrial servo system,” IEEE Industry Application Conference, vol.1, pp. 252-258, 2001.
[8]http://global.yamaha-motor.com/global/about/business/ev/
[9]Hewlett Packard Technical Staff: “HP3563A Operating Manual,” Hewlett Packard, 1990.
[10]H. Kazerooni, “Extender: A Case Study for Human-Robot Interaction via Transfer of Power and Information Signals,” Proceedings of 2nd IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, pp.10-20, 1993.
[11]H. I. Krebs, N. Hogan, B. T. Volpe, M. L. Aisen, L. Edelstein, and C. Diels, “Overview of clinical trials with MIT-MANUS: A robot-aided neuro-rehabilitation facility. Technology and Health Care,” vol. 7, no. 6, pp. 419-423, 1999.
[12]H. F. M. Van der Loos, S. A. Kautz, D. F. Schwandt, J. Anderson, G. Chen, D. M. Bevly, “A split-crank, servomotor-controlled bicycle ergometer design for studies in human biomechanics,” Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol.2, pp.1409-1414, 2002.
[13]J. H. Kim, and J. B. Song, “Control Logic for an Electric Power Steering System Using Assist Motor,” Mechatronics, vol. 12, no. 3, pp. 447-459, 2002.
[14]L. Ballaz, N. Fusco, A. Cretual, B. Langella, and R. Brissot, “Acute peripheral blood flow response induced by passive leg cycle exercise in people with spinal cord injury,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 4, pp. 471-476, 2007.
[15]M. Frascarelli, L. Mastrogregori, and L. Conforti, ”Initial motor unit recruitment in patients with spastic hemiplegia. Electromyograpy and Clinical Neurophysiology,” vol. 38, no. 5, pp. 267-271, 1998.
[16]M. A. Pagliarulo, Introduction to physical therapy, St Louis, 2001.
[17]N. J. O'Dwyer, L. Ada, and P. D. Neilson, “Spasticity and muscle contracture following stroke,” Journal of Neurology Brain, vol.119, pp. 1737-1749, 1996.
[18]P. Y. Lin, S. I. Lin, T. Penney, J. J. Chen, “Review: Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” Journal of Medical and Biological Engineering, vol. 29, no. 5, pp. 210-221, 2009.
[19]P. W. Hsueh and M. C. Tsai “Reactive Torque Monitoring and Cycling Speed Control of a Belt-Driven Cycle Ergometer,” Control Engineering Practice(Submit 2013).
[20]J. C. Chen, P. W. Hsueh, and M. C. Tsai, “Modeling and Resonant Attenuation of a Belt-Driven Cycling Device,” Proceedings of the IASTED International Conference Biomedical Engineering, Innsbruck, Austria, pp.75-80, Feb 13 - 15, 2013.
[21]R. Mazzocchio, S. Meunier, S. Ferrante, F. Molteni, and L. G. Cohen, ”Cycling, a tool for locomotor recovery after motor lesions?,” NeuroRehabilitation, vol. 23, no. 1, pp. 67-80, 2008.
[22]S. A. Kautz, and D. A. Brown, “Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke heiplegia,” Brain, vol. 121, pp. 515-526, 1998.
[23]S. Tungpataratanawong, K. Ohishi, and T. Miyazaki, ”High performance robust motion control of industrial robot parameter identification based on resonant frequency,” Annual Conference on IEEE Industrial Electronics Society, vol. 1, no. 2-6, pp. 111-116, 2004.
[24]S. Freivogel, J. Mehrholz, T. H. Sotomayor, and D. Schmalohr, “Gait training with the newly developed “LokoHelp”-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study,” Brain Injury, vol. 22, no. 7-8, pp. 625-632, 2008.
[25]S. Zhao and Z. Gao, “An active disturbance rejection based approach to vibration suppression in two-inertia systems,” Proceedings of American Control Conference, pp. 1520-1525, 2010.
[26]X. J. Chew, A. Van den Hurk, K. C. AW, “Characterisation of ionic polymer metallic composites as sensors in robotic finger joints”, International Journal of Biomechatronics and Biomedical Robotics, vol. 1, pp. 37-43, 2009.
[27]Y. Hirata, A. Hara, and K. Kosuge: “Motion Control of Passive Intelligent Walker Using Servo Brakes,” IEEE Transactions on Robotics, vol 23, no. 5, pp. 981-990, Oct. 2007.
[28]足立修一原著;趙清風編譯,使用MATLAB控制之系統識別(MATLABによるディジタル信号とシステム),台北:全華,2001。
[29]工業技術研究院機械與系統研究所,IMP-2硬體使用手冊,新竹,2010年6月。
[30]工業技術研究院機械與系統研究所,IMP Series單機模式使用者導引,新竹,2010年6月。
[31]吳楷聲,蔡明祺,伺服控制系統之實務參數設計,中國機械工程學會第19屆全國學術研討會,2002年。
[32]新北市政府衛生局,101年新北市護理機構督導考核結果,2013年2月8日。
[33]胡家勝,阻抗控制於力覺回饋控制應用之設計與實現,碩士論文,國立成功大學機械工程學系,2003年。
[34]張錚璿,「改變踏車運動迴轉速與負荷量之下肢肌電學與踩踏力量分析」,國立台灣師範大學體育學系,碩士論文,2009年。
[35]羅兆真,「中風病患在視覺回饋踩車訓練之肌電圖與生物力學分析」,國立成功大學醫學工程研究所,碩士論文,2011年。
[36]薛博文,「雙馬達之同步運動控制」,碩士論文,國立中山大學機械工程研究所, 2001年6月。
[37]薛博文、姚武松、蔡明祺,「淺談人機互動之動力輔助系統」,2010台北國際機器人展會刊,第93-100頁,2010年。