| 研究生: |
劉恬妤 Liu, Tien-Yu |
|---|---|
| 論文名稱: |
琥珀酸脫氫酶丙型過度表達在肺癌細胞中的影響 The effect of succinate dehydrogenase complex subunit C (SDHC) overexpression in lung cancer cells |
| 指導教授: |
張文粲
Chang, Wen-Tsan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 肺癌 、琥珀酸脫氫酶 、琥珀酸脫氫酶丙型 (SDHC) 、生物資訊資料庫 、SDHC過表達之肺癌細胞株 |
| 外文關鍵詞: | lung cancer, succinate dehydrogenase, succinate dehydrogenase complex subunit C (SDHC), mega databases, SDHC overexpression |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
琥珀酸脫氫酶 (SDH) 在能量代謝中扮演重要角色,其同時參與檸檬酸循環 (TCA cycle) 以及電子傳遞鏈 (ETC),其複合體為四個單元體SDHA、SDHB、SDHC以及SDHD並和四個輔因子所組成。先前本實驗室曾對肝癌的惡性程度與SDHB表達抑制之間的關係,然而發現同一SDH複合物的單元體SDHC,卻有不同的表達與作用,且對於多個大型數據庫進行分析,表明在肺癌之中當SDHC過表達,其病人預後較差。首先調查SDHC之研究背景,透過cBioPortal、Oncomine、Prognoscan以及COSMIC還有其他大型數據庫等的分析表明,其SDHC的高表達可增加癌細胞的生長,並且與SDH複合物的其他單元體結果不同,本實驗室已針對肺癌細胞株 (A549和H1299) 進行SDHC表達的抑制作用,發現此會導致癌細胞生長趨緩以及爬行能力的缺失。為了更進一步研究SDHC過表達在肺癌以及與肺癌惡性程度之間關係,利用已建構完成之pEGFP-N1-pSDHC及pSDHC,其過表達SDHC-GFP及SDHC之質體,進行轉染肺癌細胞 (A549和H1299),建立穩定過表達SDHC肺癌細胞株。成功地在肺癌細胞中建立了SDHC過表達的穩定細胞株,並測定了對照組細胞(A549和H1299) 與SDHC過表達的肺癌細胞之間的差異,與對照組相比,其在正常情況下,利用MTT細胞生長測定、細胞遷移、傷口癒合細胞爬行測驗和產酸能力實驗,其結果沒有明顯的差異性。此外發現抑制SDHC表達時會誘導SDHA蛋白的上調,這與腫瘤細胞中SDHB抑制作用和SDHC過表達不同;發現SDHC過表達時,SDH複合物其他單元體SDHA及SDHB也會跟著上調,並推測其可能會發生互補情況,造成與對照組相比無明顯差異性。雖然SDHC過表達是否影響腫瘤的機制尚不清楚,但透過資料庫分析其SDHC的過度表達似乎是影響肺癌預後的重要因素。
Succinate dehydrogenase (SDH) plays an important role in energy metabolism and participates in the tricarboxylic acid (TCA) cycle as well as the electron transport chain (ETC). It is a complex of four subunits, SDHA, SDHB, SDHC, SDHD, and four cofactors. Previously, our laboratory has established a relationship between tumor malignancy and the decrease of SDHB, a tumor suppressor, in liver cancer. Analysis of the multiple mega databases indicated that SDHC is overexpressed in lung cancer but has a poor prognosis. In addition, the SDHC and SDHB are subunits of the SDH complex but display different expression levels and effects. Analysis of the cBioPortal, Oncomine, Prognoscan, COSMIC, and other mega databases showed that high expression of SDHC increases cancer cell growth and that is different from other subunits of SDH complex. Additionally, knockdown of SDHC expression by shRNA molecules in the lung cancer cells H1299 and A549 resulted in the decrease of cell proliferation and crawling. To investigate further the effect of SDHC overexpression in lung cancer, the lung cancer cells were transfected with SDHC overexpression construct containing SDHC coding sequence fused with green fluorescent protein (GFP) gene, and only SDHC coding sequence. I established the stable cell line of the SDHC overexpression successfully in the lung cancer cells and assayed the difference between the control cancer cells (H1299 and A549) and the SDHC-overexpressed cancer cells. As compared with the control cancer cells, the SDHC-overexpressed cell lines exhibited that overexpression of the SDHC has no significant effects on MTT cell growth assay, cell migration, wound healing, and pH measurement under normal circumstances. In addition, knockdown of SDHC expression induced the up-regulation of SDHA proteins that were different from SDHB inhibition and SDHC overexpression in the tumor cells. We found that overexpression of the SDHC expression increased SDHA and SDHB expression because it is speculated that SDH subunits affect to be balanced off. Although the mechanism of SDHC overexpression affects the tumor is unknown. It seems SDHC overexpression is an important factor in lung cancer prognosis by analyzing the mega databases.
1. Siegel R. L., Miller K. D., and Jemal A., Cancer statistics, 2020. CA Cancer J. Clin. 70:7-30, 2020.
2. Fruh M., De Ruysscher D., Popat S., Crino L., Peters S., Felip E., et al., Small-cell lung cancer (SCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 Suppl 6:vi99-105, 2013.
3. Rivera M. P., Detterbeck F., Mehta A. C., and American College of Chest P., Diagnosis of lung cancer: the guidelines. Chest 123:129S-136S, 2003.
4. Herbst R. S., Heymach J. V., and Lippman S. M., Lung cancer. N. Engl. J. Med. 359:1367-1380, 2008.
5. Arbour K. C., and Riely G. J., Systemic Therapy for Locally Advanced and Metastatic Non-Small Cell Lung Cancer: A Review. JAMA 322:764-774, 2019.
6. Planchard D., Popat S., Kerr K., Novello S., Smit E. F., Faivre-Finn C., et al., Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29 Suppl 4:iv192-iv237, 2018.
7. Vineis P., Airoldi L., Veglia F., Olgiati L., Pastorelli R., Autrup H., et al., Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study. BMJ 330:277, 2005.
8. Couraud S., Zalcman G., Milleron B., Morin F., and Souquet P. J., Lung cancer in never smokers--a review. Eur. J. Cancer 48:1299-1311, 2012.
9. Lunt S. Y., and Vander Heiden M. G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441-464, 2011.
10. Romano A. H., and Conway T., Evolution of carbohydrate metabolic pathways. Res Microbiol 147:448-455, 1996.
11. Pelicano H., Martin D. S., Xu R. H., and Huang P., Glycolysis inhibition for anticancer treatment. Oncogene 25:4633-4646, 2006.
12. Vander Heiden M. G., Cantley L. C., and Thompson C. B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029-1033, 2009.
13. Akram M., Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 68:475-478, 2014.
14. Koivunen P., Hirsilä M., Remes A. M., Hassinen I. E., Kivirikko K. I., and Myllyharju J., Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524-4532, 2007.
15. Plas D. R., and Thompson C. B., Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24:7435-7442, 2005.
16. Bardella C., Pollard P. J., and Tomlinson I., SDH mutations in cancer. Biochim Biophys Acta 1807:1432-1443, 2011.
17. Vyas S., Zaganjor E., and Haigis M. C., Mitochondria and Cancer. Cell 166:555-566, 2016.
18. Bezawork-Geleta A., Rohlena J., Dong L., Pacak K., and Neuzil J., Mitochondrial Complex II: At the Crossroads. Trends Biochem. Sci. 42:312-325, 2017.
19. McBride H. M., Neuspiel M., and Wasiak S., Mitochondria: more than just a powerhouse. Curr Biol 16:R551-560, 2006.
20. Chae Y. C., Angelin A., Lisanti S., Kossenkov A. V., Speicher K. D., Wang H., et al., Corrigendum: Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 6:7605, 2015.
21. Zong W. X., Rabinowitz J. D., and White E., Mitochondria and Cancer. Mol Cell 61:667-676, 2016.
22. Fang D., and Maldonado E. N., VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation. Adv. Cancer Res. 138:41-69, 2018.
23. Mullen A. R., Wheaton W. W., Jin E. S., Chen P. H., Sullivan L. B., Cheng T., et al., Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385-388, 2011.
24. Maldonado E. N., VDAC-Tubulin, an Anti-Warburg Pro-Oxidant Switch. Front. Oncol. 7:4, 2017.
25. Lancaster C. R., Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase. FEBS Lett. 555:21-28, 2003.
26. Van Vranken J. G., Bricker D. K., Dephoure N., Gygi S. P., Cox J. E., Thummel C. S., et al., SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 20:241-252, 2014.
27. Van Vranken J. G., Na U., Winge D. R., and Rutter J., Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 50:168-180, 2015.
28. Sharma P., Maklashina E., Cecchini G., and Iverson T. M., Crystal structure of an assembly intermediate of respiratory Complex II. Nat Commun 9:274, 2018.
29. Her Y. F., and Maher L. J., 3rd, Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int. J. Endocrinol. 2015:296167, 2015.
30. Sun F., Huo X., Zhai Y., Wang A., Xu J., Su D., et al., Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043-1057, 2005.
31. Huang S., and Millar A. H., Succinate dehydrogenase: the complex roles of a simple enzyme. Curr. Opin. Plant Biol. 16:344-349, 2013.
32. Dourado D., Swart M., and Carvalho A. T. P., Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH(2) into FAD. Chemistry (Easton) 24:5246-5252, 2018.
33. Saxena N., Maio N., Crooks D. R., Ricketts C. J., Yang Y., Wei M. H., et al., SDHB-Deficient Cancers: The Role of Mutations That Impair Iron Sulfur Cluster Delivery. J Natl Cancer Inst 108, 2016.
34. Cecchini G., Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77-109, 2003.
35. Gill A. J., Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 72:106-116, 2018.
36. Reisch A. S., and Elpeleg O., Biochemical assays for mitochondrial activity: assays of TCA cycle enzymes and PDHc. Methods Cell Biol 80:199-222, 2007.
37. Hoekstra A. S., and Bayley J. P., The role of complex II in disease. Biochim Biophys Acta 1827:543-551, 2013.
38. Dalla Pozza E., Dando I., Pacchiana R., Liboi E., Scupoli M. T., Donadelli M., et al., Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 98:4-14, 2020.
39. Pantaleo M. A., Lolli C., Nannini M., Astolfi A., Indio V., Saponara M., et al., Good survival outcome of metastatic SDH-deficient gastrointestinal stromal tumors harboring SDHA mutations. Genet. Med. 17:391-395, 2015.
40. Evenepoel L., Papathomas T. G., Krol N., Korpershoek E., de Krijger R. R., Persu A., et al., Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations. Genet. Med. 17:610-620, 2015.
41. Jiang Q., Zhang Y., Zhou Y. H., Hou Y. Y., Wang J. Y., Li J. L., et al., A novel germline mutation in SDHA identified in a rare case of gastrointestinal stromal tumor complicated with renal cell carcinoma. Int. J. Clin. Exp. Pathol. 8:12188-12197, 2015.
42. Wong M. Y., Andrews K. A., Challis B. G., Park S. M., Acerini C. L., Maher E. R., et al., Clinical Practice Guidance: Surveillance for phaeochromocytoma and paraganglioma in paediatric succinate dehydrogenase gene mutation carriers. Clin. Endocrinol. (Oxf.) 90:499-505, 2019.
43. Tseng P. L., Wu W. H., Hu T. H., Chen C. W., Cheng H. C., Li C. F., et al., Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the Warburg effect. Sci. Rep. 8:3081, 2018.
44. Udager A. M., Magers M. J., Goerke D. M., Vinco M. L., Siddiqui J., Cao X., et al., The utility of SDHB and FH immunohistochemistry in patients evaluated for hereditary paraganglioma-pheochromocytoma syndromes. Hum. Pathol. 71:47-54, 2018.
45. Ilanchezhian M., Fuller S. N., Raygada M., Stratakis C. A., Meltzer P. S., Miettinen M., et al., Clinical characterization of patients with SDHC epimutation in gastrointestinal stromal tumors. American Society of Clinical Oncology, 2019.
46. Røsland G. V., Dyrstad S. E., Tusubira D., Helwa R., Tan T. Z., Lotsberg M. L., et al., Epithelial to mesenchymal transition (EMT) is associated with attenuation of succinate dehydrogenase (SDH) in breast cancer through reduced expression of SDHC. Cancer Metab 7:6, 2019.
47. Ding Y., Feng Y., Wells M., Huang Z., and Chen X., SDHx gene detection and clinical Phenotypic analysis of multiple paraganglioma in the head and neck. Laryngoscope 129:E67-e71, 2019.
48. Favier J., Amar L., and Gimenez-Roqueplo A. P., Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat. Rev. Endocrinol. 11:101-111, 2015.
49. Gao J., Aksoy B. A., Dogrusoz U., Dresdner G., Gross B., Sumer S. O., et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1, 2013.
50. Cerami E., Gao J., Dogrusoz U., Gross B. E., Sumer S. O., Aksoy B. A., et al., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401-404, 2012.
51. Rhodes D. R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh D., et al., ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1-6, 2004.
52. Uhlén M., Fagerberg L., Hallström B. M., Lindskog C., Oksvold P., Mardinoglu A., et al., Proteomics. Tissue-based map of the human proteome. Science 347:1260419, 2015.
53. Cooper W. A., Kohonen-Corish M. R., McCaughan B., Kennedy C., Sutherland R. L., and Lee C. S., Expression and prognostic significance of cyclin B1 and cyclin A in non-small cell lung cancer. Histopathology 55:28-36, 2009.
54. Mizuno H., Kitada K., Nakai K., and Sarai A., PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med. Genomics 2:18, 2009.
55. Liberti M. V., and Locasale J. W., The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 41:211-218, 2016.
56. Rieger B., Shalaeva D. N., Söhnel A. C., Kohl W., Duwe P., Mulkidjanian A. Y., et al., Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells. Sci. Rep. 7:46055, 2017.
57. Gimenez-Roqueplo A. P., Favier J., Rustin P., Rieubland C., Kerlan V., Plouin P. F., et al., Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab. 87:4771-4774, 2002.
58. van Nederveen F. H., Gaal J., Favier J., Korpershoek E., Oldenburg R. A., de Bruyn E. M., et al., An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol. 10:764-771, 2009.
59. Guzy R. D., Sharma B., Bell E., Chandel N. S., and Schumacker P. T., Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718-731, 2008.
60. Moloney J. N., and Cotter T. G., ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50-64, 2018.
61. Dong L. F., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B., et al., Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6, 2017.
62. LeBleu V. S., O'Connell J. T., Gonzalez Herrera K. N., Wikman H., Pantel K., Haigis M. C., et al., PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16:992-1003, 1001-1015, 2014.
63. Chattopadhyay C., Oba J., Roszik J., Marszalek J. R., Chen K., Qi Y., et al., Elevated Endogenous SDHA Drives Pathological Metabolism in Highly Metastatic Uveal Melanoma. Invest. Ophthalmol. Vis. Sci. 60:4187-4195, 2019.
64. Zhu H., and Bunn H. F., Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir Physiol 115:239-247, 1999.
65. Semenza G. L., HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev. 19:59-65, 2000.
66. Zu X. L., and Guppy M., Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459-465, 2004.
67. Yang S. W., Zhang Z. G., Hao Y. X., Zhao Y. L., Qian F., Shi Y., et al., HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget 8:9535-9545, 2017.
68. Tang C. M., and Yu J., Hypoxia-inducible factor-1 as a therapeutic target in cancer. J. Gastroenterol. Hepatol. 28:401-405, 2013.
69. Moosavi B., Berry E. A., Zhu X. L., Yang W. C., and Yang G. F., The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cell. Mol. Life Sci. 76:4023-4042, 2019.