| 研究生: |
王國銘 Wang, Guo-ming |
|---|---|
| 論文名稱: |
基材軟硬度及表面型態對於細胞移動之影響 The Influence of Surface Morphology and Stiffness of the Substrata on Cell Motility |
| 指導教授: |
葉明龍
Yeh, Ming-long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 長時間觀察 、基材表面型態 、細胞移動 、微機電製程 |
| 外文關鍵詞: | Migration, MEMS, Surface morphology, Long-time observation |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大多數的細胞都需要基底以利其進行吸附、移動、生長、分化等行為。細胞在進行這些行為時,會受到基底的軟硬度程度或基底表面形態的影響,進而導致不一樣的行為發生。
本研究欲探討使用不同基底,對於細胞吸附之後的移動能力之影響。利用癌細胞的移動能力,搭配上不同表面形狀、不同軟硬程度的基底材料,觀察癌細胞置於不同的基底時,對其移動的行為會有何種影響。
研究中使用的細胞為人類黑色素腫瘤細胞A2058,搭配的基底材料為聚二甲基矽氧烷PDMS,選用10:1的調配比例,並利用AFM先行量測其材料表面楊氏係數。基底材料表面形狀則為平頂圓錐及長橫溝兩種,最小線寬為6μm及5μm兩種。實驗分析記錄方面,則利用倒立式顯微鏡做兩小時長時間觀察,搭配Image Pro. Plus軟體做移動速度及方向分析計算。
實驗結果顯示,細胞置於10:1聚二甲基矽氧烷基材上,比在玻璃基材上移動速度略快。在所有實驗的圖案中,以在長橫溝上具有最快的移動速度。另外角度的調控方面,長橫溝上移動有超過80%的方向與長橫溝走向相同,顯示長橫溝對細胞方向性的移動有最佳的控制。
Most cells are anchorage dependent. They require a surface to attach in order to migrate, grow, and differentiate. Different stiffness or surface morphology of the substrata could change cells behaviors.
In this study, the relationship between the cell motility and different substrata was investigated. Cancer cells (Human melanomaA2058) were used to observe their migration behaviors after place them on different morphology and stiffness substrata. Standard concentration (10:1) of Polydimethylsiloxane (PDMS) was used as substrata materials. Young’s modulus and surface topology of PDMS were analyzed by atomic force microscopy (AFM) and scanning electron microscope (SEM), respectively. The surface morphology of the patterns in the study included flat-top cones and long grooves, which minimum line width were 6μm and 5μm. For long time observation, NIKON TE2000-E DIC Epi-Fluorescent microscopy was used. Cell migration velocity and direction were recorded and analyzed by Image Pro. Plus.
The results show that 10:1 PDMS groups had faster migration velocity than glass due to different stiffness. The one-way ANOVA analysis shows that all of the 10:1PDMS pattern had significant different with glass in migration velocity, expecting 5μm flat-top cones, indicating that cells migrate faster on PDMS. In the relationship of surface morphology and migration velocity, long grooves had the fastest migration velocity than other surface patterns. In addition, over 80% of cells on long migrated along the groove, indicating long groove was the best surface morphology to control cell directional migration in our experiment.
1.Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14 (3): 356-63, 1998.
2.Chen W-R. Study on the Mechanical Behavior of Madin-Darby Canine Kidney (MDCK) Epithelial Cell by Micro-Pillars Array. Impressed, 2007.
3.Christov K, Grubbs CJ, Shilkaitis A, Juliana MM, Lubet RA. Short-term Modulation of Cell Proliferation and Apoptosis and Preventive/Therapeutic Efficacy of Various Agents in a Mammary Cancer Model. Clin Cancer Res 13 (18): 5488-96, 2007.
4.Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 310 (5751): 1139-43, 2005.
5.Dubois F, Yourassowsky C, Monnom O, Legros JC, Debeir O, Van Ham P, Kiss R, Decaestecker C. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. J Biomed Opt 11 (5): 054032, 2006.
6.Horwitz R, Webb D. Cell migration. Curr Biol 13 (19): R756-9, 2003.
7.Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25 (8): 1966-74, 2007.
8.Kaiser JP, Reinmann A, Bruinink A. The effect of topographic characteristics on cell migration velocity. Biomaterials 27 (30): 5230-41, 2006.
9.Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J 79 (1): 144-52, 2000.
10.Palm D, Lang K, Brandt B, Zaenker KS, Entschladen F. In vitro and in vivo imaging of cell migration: two interdepending methods to unravel metastasis formation. Semin Cancer Biol 15 (5): 396-404, 2005.
11.Rajnicek AM, Foubister LE, McCaig CD. Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Biomaterials 29 (13): 2082-95, 2008.
12.Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci U S A 104 (20): 8281-6, 2007.
13.Sneddon IN. The relation between load and penatration in the cxisymmetric boussinesq problem for a punch of arbitrary profile. J. Engng. Sci. 3: 47-57, 1965.
14.Soon L, Mouneimne G, Segall J, Wyckoff J, Condeelis J. Description and characterization of a chamber for viewing and quantifying cancer cell chemotaxis. Cell Motil Cytoskeleton 62 (1): 27-34, 2005.
15.Soon LL. A discourse on cancer cell chemotaxis: where to from here? IUBMB Life 59 (2): 60-7, 2007.
16.Tien J, Chen CS. Patterning the cellular microenvironment. IEEE Eng Med Biol Mag 21 (1): 95-8, 2002.
17.Tzvetkova-Chevolleau T, Stephanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29 (10): 1541-51, 2008.
18.Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15 (3): 138-45, 2005.
19.Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res 49 (3): 362-8, 2000.
20.Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26 (26): 5405-13, 2005.