簡易檢索 / 詳目顯示

研究生: 吳文俊
Wu, Wen-Jun
論文名稱: 應變監測系統於實尺寸鋼構屋之設計與應用
Design and application of strain monitoring system in real size steel buildings
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 監測系統應變實尺寸鋼構屋量測程式有限元分析靜載實驗應變量測
外文關鍵詞: monitoring system, strain, real size steel building, measurement program, finite element analysis, static load experiment, strain measurement
相關次數: 點閱:127下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大型的工程設施的建設隨著社會的需求在不斷增加。一些大跨度的橋樑和大空間的結構在使用週期內受到環境侵蝕,材料老化,疲勞應變等耦合因素的影響,導致結構的損傷積累和抵抗自然災害的能力下降,甚至造成意外事故。結構在事故發生前出現了裂縫或變形,如果採取適當的檢測和監測措施,很可能避免事故或盡量減少損失。
    結構健康監測系統越來越多地應用於各種實際結構,評估結構安全性的主要方法是通過重力載荷,風載荷,地震載荷和意外載荷來考慮結構產生的最大應力或應變。應變監測系統由監測儀器和數據採集系統組成,應變計用於测量加載實驗中實尺寸鋼構屋的應變,6411系列應變放大器用於放大和調節應變計的低電平信號,然後提供給USB數據採集系統。測量程式用於顯示實驗過程中的應變並將資料存檔。
    接著建立了有限元模型分析實尺寸鋼構屋的應變,將有限元分析的結果與實驗結果進行比較,監測系統可以有效量測整個靜載實驗過程中結構的應變。最後,對於實驗中出現的問題,改進量測程式並進行測試,使整個應變監測系統能更好的應用於應變量測中。

    The construction of large-scale engineering facilities is increasing with the demand of society. Some large-span bridges and large space structures are affected by coupling factors such as environmental erosion, material aging, fatigue strain, etc., resulting in structural damage accumulation and resistance to natural disaster capacity decline, and even cause unexpected accidents. Before the accident, the structure has appeared cracks or deformation, if appropriate testing and monitoring measurements are taken, it is likely to avoid accidents or minimize the damage of accidents.
    The structure health monitoring systems have been increasingly applied to various types of practical structures. The primary method for evaluating the safety of a structure is to consider the maximum stress or strain generated in a structure by gravity loads, wind loads, seismic loads and unexpected loads. The strain monitoring system is composed of monitoring instruments and data acquisition system. The strain gauges are used to measure the strains of the real size steel building. The 6411 series strain amplifiers are used to amplify and adjust the low-level signals of strain gauges, and then supply to the USB data acquisition system. The measurement program is used to display the strain during the experiment and archive the data.
    Next, the finite element model is performed to analyze the strains of the real size steel building. The results of the finite element analysis are compared with the experimental results. The monitoring system can effectively measure the strain of the structure during the whole static load experiment. Finally, for the problems in the experiment, improve the measurement program and test the program, so that the entire strain monitoring system can be better applied to the strain measurement.

    摘要 I ABSTRACT II ACKNOWLEDGE IV CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1. INTRODUCTION 1 1.1 Background and Propose 1 1.2 Literature Review 2 1.2.1 Literature review of the application of strain measurements 2 1.2.2 Literature review of the program for measurement 5 1.3 Brief Account of Research 6 CHAPTER 2. INTRODUCTION OF MEASURING INSTRUMENTS AND MONITORING SYSTEM 8 2.1 Introduction 8 2.2 The Measuring Instruments 8 2.2.1 The strain gages 8 2.2.2 Strain gauge conditioning amplifier 10 2.3 The Monitoring System 14 2.3.1 RG58 cable with BNC connector 14 2.3.2 Data acquisition card 15 2.3.3 Measuring program 16 CHAPTER3. INTRODUCTION OF THE EXPERIMENT PROCEDURES 17 3.1 Introduction 17 3.2 The Description of Experiment 18 3.2.1 Laboratory test of the strain gauge 18 3.2.2 Process of pasting the strain gauges 22 3.2.3 Arrangement of the strain gauges 28 3.3 Post-processing of Recording Data 37 3.3.1 Output data 37 3.3.2 The post-processing of output data 37 3.4 The Results of Experiment 44 3.4.1 Strains of steel building before the fire 44 3.4.2 Strains of steel building after the fire 46 3.5 Discussion of the Experimental Results 55 CHAPTER4. INTRODUCTION OF THE FINITE ELEMENT ANALYSIS 58 4.1 Introduction 58 4.2 The Results of Finite Element Analysis 58 4.2.1 The finite element model of the steel building 59 4.2.2 The strains of the structure by finite element analysis 59 4.3 Discussion of the Finite Element Analysis Results 62 CHAPTER5. INTERPRETATION OF THE IMPROVEMENTS TO THE MONITORING PROGRAM 64 5.1 Introduction 64 5.2 The Improvements of the Monitoring Program 65 5.2.1 The measurement according to days or hours 65 5.2.2 The variation of voltage range in the measurement program 68 CHAPTER6. CONCLUSIONS AND FUTURE WORKS 72 6.1 Conclusions 72 6.2 Future Works 74 References 75 Appendix 79

    [1] Lee, H. M., & Park, H. S. Measurement of maximum strain of steel beam structures based on average strains from vibrating wire strain gages. Experimental Techniques, 37(2), 23-29. (2013).
    [2] Hale, J. M., & Chapman, M. M. Design, installation and calibration of a strain gauge structural monitoring system for a timber windmill. EXPERIMENTAL TECHNIQUES, 38(3), 45-53. (2014).
    [3] Daliri, A., Galehdar, A., & Rowe, W. S. T. Utilising microstrip patch antenna strain sensors for structural health monitoring. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 23(2), 169-182. (2012).
    [4] Oh, B. K., Hwang, J. W., & Lee, J. H. A strain measurement model using a limited number of sensors for steel beam structures subjected to uncertain loadings. MEASUREMENT SCIENCE AND TECHNOLOGY, 26(11). (2015).
    [5] Srinivas, V., Ramanjaneyulu, K., & Kumar, K. S. Evaluation of longitudinal force on a railway bridge based on strain measurements. EXPERIMENTAL TECHNIQUES, 37(1), 55-67. (2013).
    [6] Zhang, J., Guo, S. L., & Wu, Z. S. Structural identification and damage detection through long-gauge strain measurements. ENGINEERING STRUCTURES, 99, 173-183. (2015).
    [7] Neild, S. A., Williams, M. S., & McFadden, P. D. Measurement of low-amplitude hysteresis behavior of concrete by high-precision vibrating wire strain gauges. KEY ENGINEERING MATERIALS, 245(2), 315-322. (2003).
    [8] Hans, D. B., Amelie, O., & Philippe, V. B. Determining geometric out-of-plane imperfections in steel tied-arch bridges using strain measurements. JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES, 28(3), 549-558. (2014).
    [9] Lee, E. T., & Eun, H. C. Damage detection of beam structure using response data measured by strain gages. JOURNAL OF VIBROENGINEERING, 16(1), 147-155. (2014).
    [10] Liu, Z., & Mrad, N. Validation of strain gauges for structural health monitoring with Bayesian belief networks. IEEE SENSORS JOURNAL, 13(1), 400-407. (2013).
    [11] Costa, B. J. A., & Figueiras, J. A. Evaluation of a strain monitoring system for existing steel railway bridges. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 72, 179-191. (2012).
    [12] Li, H. C. H., Beck, F., & Dupouy, O. Strain-based health assessment of bonded composite repairs. COMPOSITE STRUCTURES, 76(3), 234-242. (2006).
    [13] Pinkaew, T., & Senjuntichai, T. Fatigue damage evaluation of railway truss bridges from field strain measurement. ADVANCES IN STRUCTURAL ENGINEERING, 12(1), 53-69. (2009).
    [14] Lee, E. T., Salam, R., & Eun, H. C. Damage detection by mixed measurements using accelerometers and strain gages. SMART MATERIALS AND STRUCTURES, 22(7). (2013).
    [15] Santos, J. P., Orcesi, A. D., & Cremona, C. Baseline-free real-time assessment of structural changes. STRUCTURE AND INFRASTRUCTURE ENGINEERING, 11(2), 145-161. (2015).
    [16] Hong, W., Cao, Y., & Wu, Z. S. Strain-based damage-assessment method for bridges under moving vehicular loads using long-gauge strain sensing. JOURNAL OF BRIDGE ENGINEERING, 21(10). (2016).
    [17] Kalita, K., Das, N., Boruah, P. K., & Sarma, U. Design and uncertainty evaluation of a strain measurement system. MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 31(1), 17-24. (2016).
    [18] Harvey, D. Y., & Todd, M. D. Structural health monitoring feature design by genetic programming. SMART MATERIALS AND STRUCTURES, 23(9). (2014).
    [19] Brownjohn, J. M. W., Moyo, P., Omenzetter, P., & Chakraborty, S. Lessons from monitoring the performance of highway bridges. STRUCTURAL CONTROL & HEALTH MONITORING, 12(3-4), 227-244. (2005).
    [20] Rainieri, C., Fabbrocino, G., & de Magistris, F. S. An integrated seismic monitoring system for a full-scale embedded retaining wall. GEOTECHNICAL TESTING JOURNAL, 36(1), 40-53. (2013).
    [21] Kim, S. H., Yoon, C., & Kim, B. J. Structure monitoring system based on sensitivity analysis and a neural network. COMPUTER-AIDE CIVIL AND INFRASTRUCTURE ENGINEERING, 15(4), 309-318. (2000).
    [22] Park, H.S., Lee, H. M., Adeli, H., & Lee, I. A new approach for health monitoring of structures: Terrestrail laser scanning. COMPUTER-AIDE CIVIL AND INFRASTRUCTURE ENGINEERING, 22(1), 19-30. (2007).
    [23] Reynolds, P., Pavic, A., & Ibrahim, Z. A remote monitoring system for stadia dynamics. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 157(6), 385-393, (2004).
    [24] 朱聖浩,“結構實驗”,國立成功大學土木工程研究所,結構實驗課程教材(2002)。
    [25] 邱建智,“監測自動化系統C程式之建立”,國立成功大學土木工程研究所,碩士論文(2012)。
    [26] 張漢羽,“線性可差分變壓器用於自動化監測系統之研究”,國立成功大學土木工程研究所,碩士論文(2012)。
    [27] 劉立泰,“微振監測自動化系統程式之建立”,國立成功大學土木工程研究所,碩士論文(2004)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE