簡易檢索 / 詳目顯示

研究生: 陳建佑
Chen, Jian-You
論文名稱: 探討人類基底細胞癌WOX1表現與bFGF刺激血管新生之研究
WOX1 expression is related to bFGF release to influence angiogenesis in basal cell carcinoma
指導教授: 陳淑姿
Chen, Shur-Tzu
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 50
中文關鍵詞: 血管新生鹼性纖維細胞生長因子雞胚絨毛尿囊膜人類基底細胞癌
外文關鍵詞: angiogenesis, CAM assay, HUVECs, bFGF, WOX1, BCC
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的WWOX基因位於易斷裂的第16對染色體長臂(q arm)23.3-24.1的位置上。在於多數癌症研究當中,WWOX目前被認為是個腫瘤抑制基因。過去研究顯示癌症進展必需伴隨著血管新生(angiogenesis)。基底細胞癌(BCC)是人類中最常見的惡性腫瘤。過去我們發現在大量表現WOX1蛋白的異種移殖基底細胞癌腫瘤中,癌細胞生長以及血管新生的情形是被抑制的。因此,本研究主要探討究竟在於人類基底細胞癌細胞株中,WOX1蛋白的表現是否與血管新生有關。我們利用了西方墨點法和免疫組織化學染色法(IHC)來偵測鹼性纖維細胞生長因子(bFGF)的表現量。進一步利用酵素連結免疫吸附分析(ELISA)和雞胚絨毛尿囊膜(CAM)實驗,以及人類臍帶內皮細胞(HUVECs)血管生成(tube formation)實驗來探討血管新生的情形。實驗結果顯示,利用基因轉殖技術在人類基底細胞癌的細胞株中,使得WOX1蛋白大量表現,此時鹼性纖維細胞生長因子在細胞中所表現的量相對於對照組是比較低的。在動物實驗當中,鹼性纖維細胞生長因子在於大量表現WOX1蛋白的基底細胞癌的切片上,與對照組相比也是來的比較低的。利用了酵素連結免疫吸附分析測量培養基中鹼性纖維細胞生長因子的量,發現大量表現WOX1蛋白的實驗組所釋放鹼性纖維細胞生長因子的量相對於對照組是較低的。在雞胚絨毛尿囊膜實驗中,顯示處理大量表現WOX1蛋白基底細胞癌的上清液後,血管新生的情形會下降。在人類臍帶內皮細胞血管生成的實驗中,處理大量表現WOX1蛋白基底細胞癌的上清液16小時後,血管生成的情形會明顯下降。概括上述,WOX1可能經由抑制鹼性纖維細胞生長因子的形成進而抑制血管新生的能力。

    The human WWOX gene is located on a fragile site on the chromosome 16q23.3-24.1. Previous studies propose that WWOX is considered a candidate tumor suppressor gene. Previous studied show that tumor growth is angiogenesis-dependent. Basal cell carcinoma (BCC) is the most common malignant skin neoplasm of humans. We have previously observed that both tumor progression and angiogenesis was downregulated in the xenograft BCC tumor which was overexpressed WOX1. Thus, the aim of this study is to investigate expression of WOX1 is related to angiognensis in basal cell carcinoma. We used western blotting and immunohistochemistry to examine the expression of bFGF, and further, we investigated angiogenesis with ELISA, chick embryo chorioallantoic membrane (CAM) assay, and HUVECs tube formation assay. The results showed that the level of bFGF expression was down-regulated in the WOX1 over-expressed BCC (BCC/WOX1) cells, compared with control (BCC/pEGFPC1). In the animal model, the immuno-intensity of bFGF in the BCC/WOX1 solid tumor is significantly decreased, compared with control (BCC/Scramble). The ELISA assay showed that the secretion of bFGF to extracellular space was down-regulated in the BCC/WOX1 cells. In the CAM assay, the stimulation of angiogenesis on the CAM was reduced after treating condition medium from BCC/WOX1 cells. The HUVECs tube formation in the matrigel was down-regulated after treating condition medium from BCC/WOX1 cells. All of the above, WOX1 might inhibit bFGF expression, and further, it inhibits angiogenesis in BCC cells.

    Abstract in Chinese---------------------------------------I Abstract------------------------------------------------III Acknowledgements-----------------------------------------IV Table of Contents-----------------------------------------V List of Figures-----------------------------------------VII Introduction----------------------------------------------1 WOX1------------------------------------------------------1 bFGF------------------------------------------------------3 Basal Cell Carcinoma--------------------------------------6 Angiogenesis----------------------------------------------7 Aim-------------------------------------------------------8 Material and Methods--------------------------------------9 Cell culture----------------------------------------------9 Gene Transfection----------------------------------------12 Western Blotting-----------------------------------------13 Preparation of Condition Medium--------------------------16 ELISA----------------------------------------------------17 Chick Embryo Chorioallantoic Membrane (CAM) Assay--------17 In Vitro Matrigel Angiogenesis Assay---------------------18 Immunohistochemistry-------------------------------------19 Statistical Analysis-------------------------------------21 Results--------------------------------------------------22 Expression of p-WOX1 in different transiently transfected BCC cell lines-------------------------------------------22 Expression of bFGF in different transiently transfected BCC cell lines-------------------------------------------22 Expression of WOX1 in solid tumors of different transiently transfected BCC cells on nude mice ----------23 Expression of bFGF in solid tumors of different transiently transfected BCC cells on nude mice-----------23 Expression of bFGF in different normal condition media---24 Angiogenesis of different concentrated condition media in vivo-----------------------------------------------------24 Angiogenesis of different normal condition media in vitro-----------------------------------------------------------25 Discussion-----------------------------------------------26 References-----------------------------------------------39 About the author-----------------------------------------50

    Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y et al (2005). WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 65: 6764-72.
    Aqeilan RI, Kuroki T, Pekarsky Y, Albagha O, Trapasso F, Baffa R et al (2004a). Loss of WWOX expression in gastric carcinoma. Clin Cancer Res 10: 3053-8.
    Aqeilan RI, Palamarchuk A, Weigel RJ, Herrero JJ, Pekarsky Y, Croce CM (2004b). Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res 64: 8256-61.
    Aqeilan RI, Pekarsky Y, Herrero JJ, Palamarchuk A, Letofsky J, Druck T et al (2004c). Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 101: 4401-6.
    Arbiser JL, Byers HR, Cohen C, Arbeit J (2000). Altered basic fibroblast growth factor expression in common epidermal neoplasms: examination with in situ hybridization and immunohistochemistry. J Am Acad Dermatol 42: 973-7.
    Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H et al (1999). A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19: 505-14.
    Avalos-Diaz E, Alvarado-Flores E, Herrera-Esparza R (1999). UV-A irradiation induces transcription of IL-6 and TNF alpha genes in human keratinocytes and dermal fibroblasts. Rev Rhum Engl Ed 66: 13-9.
    Basilico C, Moscatelli D (1992). The FGF family of growth factors and oncogenes. Adv Cancer Res 59: 115-65.
    Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM (2000). WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60: 2140-5.
    Birnbaum D, deLapeyriere O, Adnane J, Dionne C, Crumley G, Jaye M et al (1991). Role of FGFs and FGF receptors in human carcinogenesis. Ann N Y Acad Sci 638: 409-11.
    Bottcher RT, Niehrs C (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26: 63-77.
    Bugler B, Amalric F, Prats H (1991). Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 11: 573-7.
    Carmeliet P (2003). Angiogenesis in health and disease. Nat Med 9: 653-60.
    Carmeliet P, Jain RK (2000). Angiogenesis in cancer and other diseases. Nature 407: 249-57.
    Chang NS, Doherty J, Ensign A (2003a). JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem 278: 9195-202.
    Chang NS, Doherty J, Ensign A, Lewis J, Heath J, Schultz L et al (2003b). Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 66: 1347-54.
    Chang NS, Doherty J, Ensign A, Schultz L, Hsu LJ, Hong Q (2005a). WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem 280: 43100-8.
    Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM (2007). WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 13: 12-22.
    Chang NS, Pratt N, Heath J, Schultz L, Sleve D, Carey GB et al (2001). Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 276: 3361-70.
    Chang NS, Schultz L, Hsu LJ, Lewis J, Su M, Sze CI (2005b). 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24: 714-23.
    Chen ST, Chuang JI, Cheng CL, Hsu LJ, Chang NS (2005). Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Neuroscience 130: 397-407.
    Chen ST, Chuang JI, Wang JP, Tsai MS, Li H, Chang NS (2004). Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 124: 831-9.
    Cross MJ, Claesson-Welsh L (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22: 201-7.
    Crowson AN, Magro CM, Kadin ME, Stranc M (1996). Differential expression of the bcl-2 oncogene in human basal cell carcinoma. Hum Pathol 27: 355-9.
    Dell'Era P, Belleri M, Stabile H, Massardi ML, Ribatti D, Presta M (2001). Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene 20: 2655-63.
    Dellacono FR, Spiro J, Eisma R, Kreutzer D (1997). Expression of basic fibroblast growth factor and its receptors by head and neck squamous carcinoma tumor and vascular endothelial cells. Am J Surg 174: 540-4.
    Driouch K, Prydz H, Monese R, Johansen H, Lidereau R, Frengen E (2002). Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. Oncogene 21: 1832-40.
    Florkiewicz RZ, Anchin J, Baird A (1998). The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem 273: 544-51.
    Florkiewicz RZ, Majack RA, Buechler RD, Florkiewicz E (1995). Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J Cell Physiol 162: 388-99.
    Florkiewicz RZ, Sommer A (1989). Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci U S A 86: 3978-81.
    Folkman J (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182-6.
    Folkman J (1990). What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4-6.
    Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, McLean DI et al (1995). Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 131: 157-63.
    Gaubert F, Escaffit F, Bertrand C, Korc M, Pradayrol L, Clemente F et al (2001). Expression of the high molecular weight fibroblast growth factor-2 isoform of 210 amino acids is associated with modulation of protein kinases C delta and epsilon and ERK activation. J Biol Chem 276: 1545-54.
    Giavazzi R, Giuliani R, Coltrini D, Bani MR, Ferri C, Sennino B et al (2001). Modulation of tumor angiogenesis by conditional expression of fibroblast growth factor-2 affects early but not established tumors. Cancer Res 61: 309-17.
    Grose R, Dickson C (2005). Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16: 179-86.
    Guo HR, Yu HS, Hu H, Monson RR (2001). Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, ROC). Cancer Causes Control 12: 909-16.
    Gupta S, Aggarwal S, Nakamura S (1998). A possible role of multidrug resistance-associated protein (MRP) in basic fibroblast growth factor secretion by AIDS-associated Kaposi's sarcoma cells: a survival molecule? J Clin Immunol 18: 256-63.
    Hartevelt MM, Bavinck JN, Kootte AM, Vermeer BJ, Vandenbroucke JP (1990). Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation 49: 506-9.
    Hortala M, Estival A, Pradayrol L, Susini C, Clemente F (2005). Identification of c-Jun as a critical mediator for the intracrine 24 kDa FGF-2 isoform-induced cell proliferation. Int J Cancer 114: 863-9.
    Iliopoulos D, Guler G, Han SY, Druck T, Ottey M, McCorkell KA et al (2006). Roles of FHIT and WWOX fragile genes in cancer. Cancer Lett 232: 27-36.
    Itoh N, Ornitz DM (2004). Evolution of the Fgf and Fgfr gene families. Trends Genet 20: 563-9.
    Jee SH, Chu CY, Chiu HC, Huang YL, Tsai WL, Liao YH et al (2004). Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J Invest Dermatol 123: 1169-75.
    Jemec GB, Holm EA (2003). Nonmelanoma skin cancer in organ transplant patients. Transplantation 75: 253-7.
    Jiang WG, Puntis MC, Hallett MB (1994). Molecular and cellular basis of cancer invasion and metastasis: implications for treatment. Br J Surg 81: 1576-90.
    Jin C, Ge L, Ding X, Chen Y, Zhu H, Ward T et al (2006). PKA-mediated protein phosphorylation regulates ezrin-WWOX interaction. Biochem Biophys Res Commun 341: 784-91.
    Johnson DE, Williams LT (1993). Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60: 1-41.
    Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S et al (1997). Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14: 171-83.
    Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D (1991). Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66: 1095-104.
    Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM (1997). Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 151: 1775-84.
    Kuroki T, Trapasso F, Shiraishi T, Alder H, Mimori K, Mori M et al (2002). Genetic alterations of the tumor suppressor gene WWOX in esophageal squamous cell carcinoma. Cancer Res 62: 2258-60.
    Kuroki T, Yendamuri S, Trapasso F, Matsuyama A, Aqeilan RI, Alder H et al (2004). The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res 10: 2459-65.
    Lacour JP (2002). Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 146 Suppl 61: 17-9.
    Lai FJ, Cheng CL, Chen ST, Wu CH, Hsu LJ, Lee JY et al (2005). WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin Cancer Res 11: 5769-77.
    Lear JT, Tan BB, Smith AG, Bowers W, Jones PW, Heagerty AH et al (1997). Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. J R Soc Med 90: 371-4.
    Lichter MD, Karagas MR, Mott LA, Spencer SK, Stukel TA, Greenberg ER (2000). Therapeutic ionizing radiation and the incidence of basal cell carcinoma and squamous cell carcinoma. The New Hampshire Skin Cancer Study Group. Arch Dermatol 136: 1007-11.
    Lokeshwar VB, Cerwinka WH, Isoyama T, Lokeshwar BL (2005). HYAL1 hyaluronidase in prostate cancer: a tumor promoter and suppressor. Cancer Res 65: 7782-9.
    Ludes-Meyers JH, Bednarek AK, Popescu NC, Bedford M, Aldaz CM (2003). WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res 100: 101-10.
    Ludes-Meyers JH, Kil H, Bednarek AK, Drake J, Bedford MT, Aldaz CM (2004). WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene 23: 5049-55.
    Mahajan NP, Whang YE, Mohler JL, Earp HS (2005). Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65: 10514-23.
    Marcil I, Stern RS (2000). Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch Dermatol 136: 1524-30.
    Mignatti P, Morimoto T, Rifkin DB (1992). Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol 151: 81-93.
    Miller SJ (1991a). Biology of basal cell carcinoma (Part I). J Am Acad Dermatol 24: 1-13.
    Miller SJ (1991b). Biology of basal cell carcinoma (Part II). J Am Acad Dermatol 24: 161-75.
    Nijsten TE, Stern RS (2003). The increased risk of skin cancer is persistent after discontinuation of psoralen+ultraviolet A: a cohort study. J Invest Dermatol 121: 252-8.
    Nunez MI, Ludes-Meyers J, Aldaz CM (2006). WWOX protein expression in normal human tissues. J Mol Histol 37: 115-25.
    O'Keefe LV, Richards RI (2006). Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 232: 37-47.
    O'Reilly MS, Holmgren L, Chen C, Folkman J (1996). Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2: 689-92.
    Ohta T, Yamamoto M, Numata M, Iseki S, Tsukioka Y, Miyashita T et al (1995). Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas. Br J Cancer 72: 824-31.
    Pasumarthi KB, Kardami E, Cattini PA (1996). High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res 78: 126-36.
    Piotrowicz RS, Martin JL, Dillman WH, Levin EG (1997). The 27-kDa heat shock protein facilitates basic fibroblast growth factor release from endothelial cells. J Biol Chem 272: 7042-7.
    Powell PP, Klagsbrun M (1991). Three forms of rat basic fibroblast growth factor are made from a single mRNA and localize to the nucleus. J Cell Physiol 148: 202-10.
    Powers CJ, McLeskey SW, Wellstein A (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7: 165-97.
    Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P et al (1989). High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci U S A 86: 1836-40.
    Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16: 159-78.
    Reimer CL, Agata N, Tammam JG, Bamberg M, Dickerson WM, Kamphaus GD et al (2002). Antineoplastic effects of chemotherapeutic agents are potentiated by NM-3, an inhibitor of angiogenesis. Cancer Res 62: 789-95.
    Renko M, Quarto N, Morimoto T, Rifkin DB (1990). Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol 144: 108-14.
    Richards RI (2001). Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet 17: 339-45.
    Ried K, Finnis M, Hobson L, Mangelsdorf M, Dayan S, Nancarrow JK et al (2000). Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 9: 1651-63.
    Risau W (1997). Mechanisms of angiogenesis. Nature 386: 671-4.
    Rubin AI, Chen EH, Ratner D (2005). Basal-cell carcinoma. N Engl J Med 353: 2262-9.
    Sonntag WE, Forman LJ, Fiori JM, Hylka VW, Meites J (1984). Decreased ability of old male rats to secrete luteinizing hormone (LH) is not due to alterations in pituitary LH-releasing hormone receptors. Endocrinology 114: 1657-64.
    Sze CI, Su M, Pugazhenthi S, Jambal P, Hsu LJ, Heath J et al (2004). Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem 279: 30498-506.
    Taverna S, Ghersi G, Ginestra A, Rigogliuso S, Pecorella S, Alaimo G et al (2003). Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J Biol Chem 278: 51911-9.
    Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC et al (2003). Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell 95: 169-78.
    Uhr JW, Scheuermann RH, Street NE, Vitetta ES (1997). Cancer dormancy: opportunities for new therapeutic approaches. Nat Med 3: 505-9.
    Volm M, Koomagi R, Mattern J, Stammler G (1997). Prognostic value of basic fibroblast growth factor and its receptor (FGFR-1) in patients with non-small cell lung carcinomas. Eur J Cancer 33: 691-3.
    Watanabe A, Hippo Y, Taniguchi H, Iwanari H, Yashiro M, Hirakawa K et al (2003). An opposing view on WWOX protein function as a tumor suppressor. Cancer Res 63: 8629-33.
    Yaguchi H, Tsuboi R, Ueki R, Ogawa H (1993). Immunohistochemical localization of basic fibroblast growth factor in skin diseases. Acta Derm Venereol 73: 81-3.
    Yang SH, Lin JK, Huang CJ, Chen WS, Li SY, Chiu JH (2005). Silibinin inhibits angiogenesis via Flt-1, but not KDR, receptor up-regulation. J Surg Res 128: 140-6.
    Yendamuri S, Kuroki T, Trapasso F, Henry AC, Dumon KR, Huebner K et al (2003). WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res 63: 878-81.
    Yiangou C, Gomm JJ, Coope RC, Law M, Luqmani YA, Shousha S et al (1997). Fibroblast growth factor 2 in breast cancer: occurrence and prognostic significance. Br J Cancer 75: 28-33.
    Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006). Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281: 15694-700.

    下載圖示 校內:2009-12-10公開
    校外:2010-12-10公開
    QR CODE