簡易檢索 / 詳目顯示

研究生: 張詔翔
Cheng, Chao-Hsiang
論文名稱: 研究Eps8參與在脂肪細胞形成中所扮演的角色
Studying the role of Eps8 in adipocyte formation
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 脂肪細胞分化脂肪酸合成酶
外文關鍵詞: 3T3-L1, Eps8, adipocyte formation, fatty acid synthase
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肥胖是目前全球所重視的議題,主要是由於飲食生活習慣的改變,導致肥胖人口比例逐漸增加。而現今很多的文獻也指出,肥胖和許多疾病有所關聯,例如是第二型糖尿病、心血管疾病等。肥胖是由於過多脂肪組織累積而成,因此研究脂肪細胞的分化有助於了解其參予在代謝疾病上的機制。先前的研究指出,脂肪細胞的分化會受到一連串的訊息傳遞分子所調控的,例如一些轉錄因子PPARγ 和 C/EBP 的成員等,而這些轉錄因子是透過胰島素訊息傳遞路徑所調控(已知胰島素訊息傳遞路徑對於脂肪細胞分化扮演重要的角色)。Eps8為EGFR的受質,且也是Src的受質,文獻指出Eps8會受到EGFR、Src調控其磷酸化以及表達量。進一步的研究也指出過度表達Eps8會回饋調控Src的活性,同時在2005年的文獻也指出,Src family tyrosine kinases對於脂肪細胞油滴的累積是非常重要的,所以引發我們想要去探討其受質Eps8是否也參與在脂肪細胞分化以及油滴累積的過程中。在我的實驗中,首先觀察Eps8在分化過程中表達的情形,發現到在分化初期會隨著刺激的時間增加,表達量隨之上升,而進入分化晚期表達量則逐漸減少,接著建立Eps8 knock down的細胞株(3T3-L1),並使其誘導分化觀察其脂肪細胞分化的情形,結果我們發現在抑制Eps8表達量的情況下,同時也會抑制脂肪細胞的分化以及油滴的累積;更進一步去分析與脂肪細胞分化相關的基因,例如是PPARγ、lipoprotein lipase、fatty acid synthase(脂肪酸合成酶),則發現到PPARγ以及fatty acid synthase在刺激後都會受到抑制,所以我們接著去探討Eps8是如何影響胰島素調控PPARγ以及脂肪酸合成酶。結果我們發現在抑制Eps8表達量的情形下,因胰島素刺激而活化的ERK、STAT3其活性會降低,顯示出Eps8參與在胰島素調控PPARγ以及脂肪酸合成酶的表達,可能是透過ERK/STAT3的路徑。根據上述的實驗結果顯示Eps8對於脂肪細胞的分化以及胰島素調控PPARγ以及脂肪酸合成酶的表達是相當重要的。

    Obesity becomes a major health concern worldwide due to its strong association with type 2 diabetes and cardiovascular disease. As obesity is caused by adipocyte accumulation, therefore, investigation of adipocyte differentiation might reveal the underlying mechanism of these metabolic syndromes. Earlier studies have indicated adipocyte differentiation is mainly controlled by a transcriptional cascade involving PPARγ and members of the C/EBP family of transcription factors, which were also involved in insulin signaling pathway. Given that (i) Eps8 (EGFR pathway substrate number 8) is a common substrate of both receptor tyrosine kinase (EGFR) and non-receptor tyrosine kinase (Src); (ii) Eps8 overexpression activates Src kinase; and (iii) Src family kinase activity has been implicated in adipocyte differentiation, we wonder whether Eps8 also participates in the adipocyte formation. In this study, we found that Eps8 was elevated in the beginning and then faded off during the course of 3T3-L1 cells differentiated into adipocytes. In addition, attenuation of Eps8 decreased the accumulation of lipid droplet in these cells. Furthermore, insulin-induced PPAR and fatty acid synthase was abolished in Eps8-attenuated 3T3L1 cells. Consistently, Eps8 knockdown impaired insulin-activated ERK1/2 and STAT3. Taken together, our results suggested that Eps8 participated in insulin-induced PPAR and fatty acid synthase partly via ERK/STAT3-mediated pathways.

    CONTENT ABSTRACT........................1 中文摘要.........................4 ACKNOWLEDGEMENT.................7 CONTENT.........................9 FIGURE CONTENTS.................10 ABBREVIATIONS...................11 INTRODUCTION....................13 MATERIALS AND METHODS...........22 RESULTS.........................30 DISCUSSION......................37 REFERENCES......................43 FIGURES.........................50 APPENDIX........................61 CURRICULUM VITAE................66

    REFERENCES
    Angulo, P. (2002). Nonalcoholic fatty liver disease. N Engl J Med 346, 1221-1231.

    Attie, A.D., and Scherer, P.E. (2009). Adipocyte metabolism and obesity. J Lipid Res 50 Suppl, S395-399.

    Berndt, J., Kovacs, P., Ruschke, K., Kloting, N., Fasshauer, M., Schon, M.R., Korner, A., Stumvoll, M., and Bluher, M. (2007). Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 50, 1472-1480.

    Biesova, Z., Piccoli, C., and Wong, W.T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.

    Brady, M.J., and Saltiel, A.R. (2001). The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res 56, 157-173.

    Chakravarthy, M.V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J.G., Coleman, T., Turk, J., and Semenkovich, C.F. (2005). "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1, 309-322.

    Chen, Y.J., Shen, M.R., Maa, M.C., and Leu, T.H. (2008). Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther 7, 1376-1385.

    Chirala, S.S., Jayakumar, A., Gu, Z.W., and Wakil, S.J. (2001). Human fatty acid synthase: role of interdomain in the formation of catalytically active synthase dimer. Proc Natl Acad Sci U S A 98, 3104-3108.

    Di Fiore, P.P., and Scita, G. (2002). Eps8 in the midst of GTPases. Int J Biochem Cell Biol 34, 1178-1183.

    Di Vizio, D., Sotgia, F., Williams, T.M., Hassan, G.S., Capozza, F., Frank, P.G., Pestell, R.G., Loda, M., Freeman, M.R., and Lisanti, M.P. (2007). Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biol Ther 6, 1263-1268.

    Disanza, A., Carlier, M.F., Stradal, T.E., Didry, D., Frittoli, E., Confalonieri, S., Croce, A., Wehland, J., Di Fiore, P.P., and Scita, G. (2004). Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6, 1180-1188.

    Ebbeling, C.B., Pawlak, D.B., and Ludwig, D.S. (2002). Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473-482.

    Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W.T., and Di Fiore, P.P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12, 3799-3808.

    Fernyhough, M.E., Okine, E., Hausman, G., Vierck, J.L., and Dodson, M.V. (2007). PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol 33, 367-378.

    Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., and Miki, H. (2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 64, 5237-5244.

    Gallo, R., Provenzano, C., Carbone, R., Di Fiore, P.P., Castellani, L., Falcone, G., and Alema, S. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15, 1929-1936.

    Guichard, C., Dugail, I., Le Liepvre, X., and Lavau, M. (1992). Genetic regulation of fatty acid synthetase expression in adipose tissue: overtranscription of the gene in genetically obese rats. J Lipid Res 33, 679-687.

    Guillet-Deniau, I., Pichard, A.L., Kone, A., Esnous, C., Nieruchalski, M., Girard, J., and Prip-Buus, C. (2004). Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J Cell Sci 117, 1937-1944.

    Heung, M.Y., Visegrady, B., Futterer, K., and Machesky, L.M. (2008). Identification of the insulin-responsive tyrosine phosphorylation sites on IRSp53. Eur J Cell Biol 87, 699-708.

    Hofbauer, K.G. (2002). Molecular pathways to obesity. Int J Obes Relat Metab Disord 26 Suppl 2, S18-27.

    Ka, S.O., Kim, K.A., Kwon, K.B., Park, J.W., and Park, B.H. (2009). Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. Int J Mol Med 23, 633-637.

    Karlsson, T., Songyang, Z., Landgren, E., Lavergne, C., Di Fiore, P.P., Anafi, M., Pawson, T., Cantley, L.C., Claesson-Welsh, L., and Welsh, M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10, 1475-1483.

    Kim, L.C., Song, L., and Haura, E.B. (2009). Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6, 587-595.

    Kinoshita, S., Ogawa, W., Okamoto, Y., Takashima, M., Inoue, H., Matsuki, Y., Watanabe, E., Hiramatsu, R., and Kasuga, M. (2008). Role of hepatic STAT3 in the regulation of lipid metabolism. Kobe J Med Sci 54, E200-208.

    Leu, T.H., Yeh, H.H., Huang, C.C., Chuang, Y.C., Su, S.L., and Maa, M.C. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881.

    Li, J.J., and Xie, D. (2007). Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochem Biophys Res Commun 357, 648-654.

    Lin, Y.T., Tang, C.H., Chuang, W.J., Wang, S.M., Huang, T.F., and Fu, W.M. (2005). Inhibition of adipogenesis by RGD-dependent disintegrin. Biochem Pharmacol 70, 1469-1478.

    Liu, P.S., Jong, T.H., Maa, M.C., and Leu, T.H. (2010). The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene 29, 3977-3989.

    Luo, W., Shitaye, H., Friedman, M., Bennett, C.N., Miller, J., Macdougald, O.A., and Hankenson, K.D. (2008). Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation. Exp Cell Res 314, 3382-3391.

    Lupu, R., and Menendez, J.A. (2006). Targeting fatty acid synthase in breast and endometrial cancer: An alternative to selective estrogen receptor modulators? Endocrinology 147, 4056-4066.

    Maa, M.C., Hsieh, C.Y., and Leu, T.H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112.

    Maa, M.C., Lai, J.R., Lin, R.W., and Leu, T.H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450, 341-351.

    Maa, M.C., Lee, J.C., Chen, Y.J., Lee, Y.C., Wang, S.T., Huang, C.C., Chow, N.H., and Leu, T.H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 282, 19399-19409.

    Maa, M.C., and Leu, T.H. (1998). Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation. Biochem Biophys Res Commun 251, 344-349.

    Martin, G.S. (2001). The hunting of the Src. Nat Rev Mol Cell Biol 2, 467-475.

    Matoskova, B., Wong, W.T., Nomura, N., Robbins, K.C., and Di Fiore, P.P. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679-2688.

    Murata, S., Yanagisawa, K., Fukunaga, K., Oda, T., Kobayashi, A., Sasaki, R., and Ohkohchi, N. (2010). Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Cancer Sci 101, 1861-1865.

    Postic, C., and Girard, J. (2008). Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118, 829-838.

    Rosen, E.D., and MacDougald, O.A. (2006). Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7, 885-896.

    Roth, G., Kotzka, J., Kremer, L., Lehr, S., Lohaus, C., Meyer, H.E., Krone, W., and Muller-Wieland, D. (2000). MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J Biol Chem 275, 33302-33307.

    Schuh, N.R., Guerrero, M.S., Schrecengost, R.S., and Bouton, A.H. (2010). BCAR3 regulates Src/p130 Cas association, Src kinase activity, and breast cancer adhesion signaling. J Biol Chem 285, 2309-2317.

    Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P.P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.

    Sirvent, A., Benistant, C., Pannequin, J., Veracini, L., Simon, V., Bourgaux, J.F., Hollande, F., Cruzalegui, F., and Roche, S. (2010). Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene 29, 1303-1315.

    Smith, S. (1994). The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8, 1248-1259.

    Sun, Y., Ma, Y.C., Huang, J., Chen, K.Y., McGarrigle, D.K., and Huang, X.Y. (2005). Requirement of SRC-family tyrosine kinases in fat accumulation. Biochemistry 44, 14455-14462.
    Wang, D., Zhou, Y., Lei, W., Zhang, K., Shi, J., Hu, Y., Shu, G., and Song, J. (2010). Signal transducer and activator of transcription 3 (STAT3) regulates adipocyte differentiation via peroxisome-proliferator-activated receptor gamma (PPARgamma). Biol Cell 102, 1-12.

    Witkowski, A., Joshi, A.K., and Smith, S. (2007). Coupling of the de novo fatty acid biosynthesis and lipoylation pathways in mammalian mitochondria. J Biol Chem 282, 14178-14185.

    Wong, R.H., Chang, I., Hudak, C.S., Hyun, S., Kwan, H.Y., and Sul, H.S. (2009). A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056-1072.

    Wong, R.H., and Sul, H.S. (2010). Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol 10, 684-691.
    Wong, W.T., Carlomagno, F., Druck, T., Barletta, C., Croce, C.M., Huebner, K., Kraus, M.H., and Di Fiore, P.P. (1994). Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061.

    Yang, L., Zhang, Y., Wang, L., Fan, F., Zhu, L., Li, Z., Ruan, X., Huang, H., Wang, Z., Huang, Z., et al. (2010). Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol 53, 339-347.

    Zhang, K., Guo, W., Yang, Y., and Wu, J. (2011). JAK2/STAT3 pathway is involved in the early stage of adipogenesis through regulating C/EBPbeta transcription. J Cell Biochem 112, 488-497.

    無法下載圖示 校內:2016-08-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE