簡易檢索 / 詳目顯示

研究生: 許楚彥
Hsu, Chu-Yen
論文名稱: 氮化碳衍生物製備及其光觸媒增益性質探討
Fabrication and Photocatalytic Application of Polycondensed Carbon Nitride Derivatives
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 光觸媒碳化三聚氰胺基碳化三聚氰胺基Melem寡聚物尿素基 Melem寡聚物碳化物
外文關鍵詞: Photocatalyst, melamine based melem oligomer, urea based melem oligomer, carbon functionalized
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化三聚氰胺基Melem寡聚物第一次被成功製備,其他三聚氰胺基氮化碳衍生物如melon、碳化melon、Melem寡聚物等也成功製備做為比較。XRD,UV-Vis,固態NMR和光降解等分析分別用來探討上述材料之結晶性、能隙、鍵結環境、鏈長及光催化性質等。
    從XRD和UVV-Vis中可得知碳化三聚氰胺基Melem具有低結晶性及更寬的吸收範圍,有利於光觸媒應用。在光降解實驗中,兩個寡聚物 (Melem寡聚物及碳化Melem寡聚物)比另兩個聚合物(melon及碳化melon)有顯著的光催化效應增益效果。原因來自於寡聚物比聚合物擁有更多的活性點(鏈長較短)。另外,碳化之後的三聚氰胺基氮化碳衍生物也有光催化效應增益效果。其原因來自於碳化之後更小的能隙和更廣的吸收光譜。尿素基Melem寡聚物也第一次被成功製備,其光催化效應比三聚氰胺基Melem寡聚物更為顯著。原因來自於尿素基氮化碳衍生物擁有更大的比表面積參與光催化反應。但與碳化方法比較下,其效率仍略低於碳化三聚氰胺基Melem寡聚物,藉此指出碳化方法仍有更大的光觸媒增益效果。

    Carbon functionalized melamine based melem oligomer was fabricated in the current study for the first time. Other melamine based carbon nitride derivatives, such as melem oligomer, melon, and carbon functionalized melon, were also successfully prepared for comparison. XRD, UV-Vis, solid NMR, and photodegradation characterizations were used to study the crystallinity, optical band gaps, bonding environment, chain length, and photocatalytic properties of all the aforementioned materials.
    The XRD and UV-vis results of carbon functionalized melamine based melem oligomer showed low crystallinity and strong absorption at long visible wavelength regime, which were promising for photocatalysis. In the photocatalysis study, both melem oligomer based materials showed much superior photocatalytic properties to melon based materials because more active sites were generated for melem oligomer based materials (shorter chain length). Carbon functionalized materials also showed enhanced photocatalytic properties, which resulted from a wide light absorption range due to small band gaps. Carbon functionalized melem oligomer degraded approximately four times higher of methylene blue, compared with melon. In addition, urea based melem oligomer was also fabricated for the first time. It also showed more enhanced photocatalytic properties, compared with that of melamine based melem oligomer, because of larger surface area. However, its efficiency was still slightly worse than that of carbon functionalized melamine based melem oligomer, indicating that the carbon functionalized strategy is superior to the urea based strategy.

    摘要 ii Abstract iv Content vi Table Content viii Figures Content ix Chapter 1. Introduction - 1 - A. Motivation - 1 - B. Objective - 1 - C. Photocatalyst - 2 - C.1 Fundamental mechanism of photodegradation - 2 - C.2 Approaches to enhance photocatalyst performance - 5 - C.2.1 Improvement in light absorption - 5 - C.2.2 Lengthened lifetime of photogenerated charges - 8 - C.2.3 Surface charge transfer rate - 12 - D. Carbon nitrides - 13 - D.1 History of carbon nitrides - 13 - D.2 Recent research of carbon nitrides since 1996 - 15 - D.2.1 Structure - 15 - D.2.2 Fabrication strategy - 23 - D.2.3 Carbon nitride as photocatalyst - 26 - D.2.3.i Increasing surface area - 26 - D.2.3.ii Surface terminations and defects - 29 - D.2.3.iii Carbon nitride composite - 31 - D.2.4 Nomenclature of carbon nitrides in this study - 32 - Chapter 2. Experimental section - 35 - A. Materials - 35 - B. Equipment - 35 - B.1 Tube furnace - 35 - B.2 Aluminum oxide crucible - 36 - C. Fabrication of carnon nitride derivatives. - 37 - D. Characterizations - 39 - D.1 X-ray diffraction (XRD) - 39 - D.2 Scanning electron microscope (SEM) - 40 - D.3 UV-vis Spectroscopy - 41 - D.4 Nuclear Magnetic Resonance Spectroscopy (NMR) - 42 - D.5 Atomic force microscope (AFM) - 43 - D.6 Transmission electron microscope (TEM) - 44 - D.7 Photodegradation - 46 - Chapter 3. Result and discussion - 47 - A. Initial condensation of mixture phases - 47 - B. Oligomers - 51 - C. Strategies to enhance photodegradation - 59 - C.1 Strategy I: carbon functionalized melem oligomer - 59 - C.1.1 Photodegradation - 64 - C.2 Strategy II: urea based melem oligomer - 67 - Chapter 4. Conclusions and future works - 70 - A. melem oligomer - 70 - B. Carbon functionalized melem oligomer - 70 - C. Photocatalysis - 70 - D. Future work - 71 - Reference - 75 -

    [1] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode" Nature 238, 37 (1972).
    [2] Yun Lu, Lian Hao, Yutaka Hirakawa, and Hiromasa Sato, "Antibacterial Activity of TiO2/Ti Composite Photocatalyst Films Treated by Ultrasonic Cleaning" Advances in Materials Physics and Chemistry 02, 9 (2012).
    [3] J. Peral, X. Domenech, and D. F. Ollis, "Heterogeneous photocatalysis for purification, decontamination and deodorization of air" Journal of Chemical Technology and Biotechnology 70, 117 (1997).
    [4] M. A. Lazar, S. Varghese, and S. S. Nair, "Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates" Catalysts 2, 572 (2012).
    [5] K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, "Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles" Langmuir 27, 3275 (2011).
    [6] M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis" Chemical Reviews 95, 69 (1995).
    [7] K. Maeda and K. Domen, "Photocatalytic Water Splitting: Recent Progress and Future Challenges" Journal of Physical Chemistry Letters 1, 2655 (2010).
    [8] A. O. Ibhadon and P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications" Catalysts 3, 189 (2013).
    [9] R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity" Advanced Functional Materials 24, 2421 (2014).
    [10] V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, and B. V. Lotsch, "Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites" Nat Commun 7, 12165 (2016).
    [11] Zizhong Zhang, Zhishan Luo, Zhiping Yang, Shuying Zhang, Yu Zhang, Yangen Zhou, Xuxu Wang, and Xianzhi Fu, "Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water" RSC Advances 3, 7215 (2013).
    [12] Mingyi Zhang, Changlu Shao, Jingbo Mu, Zhenyi Zhang, Zengcai Guo, Peng Zhang, and Yichun Liu, "One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity" CrystEngComm 14, 605 (2012).
    [13] Z. Zhang, J. Huang, B. Dong, Q. Yuan, Y. He, and O. S. Wolfbeis, "Rational tailoring of ZnSnO3/TiO2 heterojunctions with bioinspired surface wettability for high-performance humidity nanosensors" Nanoscale 7, 4149 (2015).
    [14] V. W. Lau, M. B. Mesch, V. Duppel, V. Blum, J. Senker, and B. V. Lotsch, "Low-molecular-weight carbon nitrides for solar hydrogen evolution" J Am Chem Soc 137, 1064 (2015).
    [15] Hui Pan, "Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability" Journal of Materials Science 50, 4324 (2015).
    [16] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations" Chem. Soc. Rev. 44, 2893 (2015).
    [17] Jiaguo Yu, Jun Zhang, and Mietek Jaroniec, "Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1−xCdxS solid solution" Green Chemistry 12, 1611 (2010).
    [18] Z. Wang, A. Shakya, J. Gu, S. Lian, and S. Maldonado, "Sensitization of p-GaP with CdSe quantum dots: light-stimulated hole injection" J Am Chem Soc 135, 9275 (2013).
    [19] Peng Zhang, Xinghua Li, Changlu Shao, and Yichun Liu, "Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis" J. Mater. Chem. A 3, 3281 (2015).
    [20] S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, "Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures" Adv. Mater. 23, 180 (2011).
    [21] Yun Hau Ng, Akihide Iwase, Akihiko Kudo, and Rose Amal, "Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting" The Journal of Physical Chemistry Letters 1, 2607 (2010).
    [22] S. Bai, X. Wang, C. Hu, M. Xie, J. Jiang, and Y. Xiong, "Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis" Chem Commun (Camb) 50, 6094 (2014).
    [23] J. G. Yu, L. F. Qi, and M. Jaroniec, "Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets" J Phys Chem C 114, 13118 (2010).
    [24] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P. M. Ajayan, "Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light" Adv. Mater. 25, 2452 (2013).
    [25] L. Gmelin, Hand book of chemistry. (1855).
    [26] Justus Liebig, "Uber einige Stickstoff - Verbindungen" Annalen der Pharmacie 10, 1 (1834).
    [27] Edward C. Franklin, "The Ammono Carbonic Acids" Journal of the American Chemical Society 44, 486 (1922).
    [28] L. Pauling and J. H. Sturdivant, "The Structure of Cyameluric Acid, Hydromelonic Acid and Related Substances" Proc Natl Acad Sci U S A 23, 615 (1937).
    [29] C. E. Redemann and H. J. Lucas, "Some derivatives of cyameluric acid and probable structures of melam, melem and melon" Journal of the American Chemical Society 62, 842 (1940).
    [30] R. S. Hosmane, M. A. Rossman, and N. J. Leonard, "Synthesis and Structure of Tri-S-Triazine" Journal of the American Chemical Society 104, 5497 (1982).
    [31] B. V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, and W. Schnick, "Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer" Chemistry 13, 4969 (2007).
    [32] D. M. Teter and R. J. Hemley, "Low-compressibility carbon nitrides" Science 271, 53 (1996).
    [33] B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, and W. Schnick, "melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies" J Am Chem Soc 125, 10288 (2003).
    [34] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl, and J. M. Carlsson, "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts" J. Mater. Chem. 18, 4893 (2008).
    [35] Edwin Kroke, Marcus Schwarz, Elisabeth Horath-Bordon, Peter Kroll, Bruce Noll, and Arlan D. Norman, "Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation" New J. Chem. 26, 508 (2002).
    [36] H. Zhang, X. Zuo, H. Tang, G. Li, and Z. Zhou, "Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations" Phys. Chem. Chem. Phys. 17, 6280 (2015).
    [37] S. Cao, J. Low, J. Yu, and M. Jaroniec, "Polymeric photocatalysts based on graphitic carbon nitride" Adv. Mater. 27, 2150 (2015).
    [38] T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M. C. Lux-Steiner, and T. Schedel-Niedrig, "Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications" J Phys Condens Matter 25, 395402 (2013).
    [39] K. Maeda, X. C. Wang, Y. Nishihara, D. L. Lu, M. Antonietti, and K. Domen, "Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light" J Phys Chem C 113, 4940 (2009).
    [40] Huanhuan Ji, Fei Chang, Xuefeng Hu, Wei Qin, and Jiaowen Shen, "Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation" Chem. Eng. J. 218, 183 (2013).
    [41] S. C. Yan, Z. S. Li, and Z. G. Zou, "Photodegradation performance of g-C3N4 fabricated by directly heating melamine" Langmuir 25, 10397 (2009).
    [42] Guigang Zhang, Jinshui Zhang, Mingwen Zhang, and Xinchen Wang, "Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts" J. Mater. Chem. 22, 8083 (2012).
    [43] F. Dong, Z. Wang, Y. Sun, W. K. Ho, and H. Zhang, "Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity" J. Colloid Interface Sci. 401, 70 (2013).
    [44] A. Belen Jorge, David James Martin, Mandeep T. S. Dhanoa, Aisha S. Rahman, Neel Makwana, Junwang Tang, Andrea Sella, Furio Corà, Steven Firth, Jawwad A. Darr, and Paul F. McMillan, "H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials" The Journal of Physical Chemistry C 117, 7178 (2013).
    [45] Xinliang Feng, Nanocarbons for Advanced Energy Conversion. (2015).
    [46] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light" Nat Mater 8, 76 (2009).
    [47] Xiufang Chen, Young-Si Jun, Kazuhiro Takanabe, Kazuhiko Maeda, Kazunari Domen, Xianzhi Fu, Markus Antonietti, and Xinchen Wang, "Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light" Chem. Mater. 21, 4093 (2009).
    [48] Ping Niu, Lili Zhang, Gang Liu, and Hui-Ming Cheng, "Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities" Advanced Functional Materials 22, 4763 (2012).
    [49] Jianhua Sun, Jinshui Zhang, Mingwen Zhang, Markus Antonietti, Xianzhi Fu, and Xinchen Wang, "Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles" Nature Communications, 1139 (2012).
    [50] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti, and X. Wang, "Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization" Angew. Chem. Int. Ed. Engl. 49, 441 (2010).
    [51] G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, and H. M. Cheng, "Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4" J Am Chem Soc 132, 11642 (2010).
    [52] J. Zhang, G. Zhang, X. Chen, S. Lin, L. Mohlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert, and X. Wang, "Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light" Angew. Chem. Int. Ed. Engl. 51, 3183 (2012).
    [53] Yong Wang, Yan Di, Markus Antonietti, Haoran Li, Xiufang Chen, and Xinchen Wang, "Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids" Chem. Mater. 22, 5119 (2010).
    [54] S. C. Yan, Z. S. Li, and Z. G. Zou, "Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation" Langmuir 26, 3894 (2010).
    [55] S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, J. Fang, S. C. Loo, J. Barber, T. C. Sum, and C. Xue, "Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime" Phys. Chem. Chem. Phys. 15, 18363 (2013).
    [56] C. A. Caputo, M. A. Gross, V. W. Lau, C. Cavazza, B. V. Lotsch, and E. Reisner, "Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst" Angew. Chem. Int. Ed. Engl. 53, 11538 (2014).
    [57] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials" Science 331, 568 (2011).
    [58] Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, and L. Qu, "Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution" ACS Nano 10, 2745 (2016).
    [59] Y. Wang, X. Wang, and M. Antonietti, "Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry" Angew. Chem. Int. Ed. Engl. 51, 68 (2012).
    [60] Y. Kang, Y. Yang, L. C. Yin, X. Kang, G. Liu, and H. M. Cheng, "An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible-Light-Responsive Range for Photocatalytic Hydrogen Generation" Adv. Mater. 27, 4572 (2015).
    [61] Xifeng Lu, Qilong Wang, and Deliang Cui, "Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite" Journal of Materials Science & Technology 26, 925 (2010).
    [62] X. Zhou, F. Peng, H. Wang, H. Yu, and Y. Fang, "Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance" Chem Commun (Camb) 47, 10323 (2011).
    [63] Kentaro Kondo, Naoya Murakami, Chen Ye, Toshiki Tsubota, and Teruhisa Ohno, "Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride" Applied Catalysis B: Environmental 142-143, 362 (2013).
    [64] Yajun Wang, Rui Shi, Jie Lin, and Yongfa Zhu, "Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4" Energy & Environmental Science 4, 2922 (2011).
    [65] S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, and B. Sreedhar, "Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis" Nanoscale 6, 4830 (2014).
    [66] Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, and X. Dong, "Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities" ACS Appl Mater Interfaces 5, 7079 (2013).
    [67] Yanlong Tian, Binbin Chang, Jie Fu, Baocheng Zhou, Jiyang Liu, Fengna Xi, and Xiaoping Dong, "Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light" J. Solid State Chem. 212, 1 (2014).
    [68] Huanxin Zhao, Shuo Chen, Xie Quan, Hongtao Yu, and Huimin Zhao, "Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment" Applied Catalysis B: Environmental 194, 134 (2016).
    [69] Po-Kai Chuang, Kwun-Han Wu, Te-Fu Yeh, and Hsisheng Teng, "Extending the π-Conjugation of g-C3N4 by Incorporating Aromatic Carbon for Photocatalytic H2 Evolution from Aqueous Solution" ACS Sustainable Chemistry & Engineering 4, 5989 (2016).
    [70] Fabian K. Kessler, Yun Zheng, Dana Schwarz, Christoph Merschjann, Wolfgang Schnick, Xinchen Wang, and Michael J. Bojdys, "Functional carbon nitride materials — design strategies for electrochemical devices" Nature Reviews Materials 2, 17030 (2017).
    [71] Zhihong Chen, Peng Sun, Bing Fan, Qiong Liu, Zhengguo Zhang, and Xiaoming Fang, "Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity" Applied Catalysis B: Environmental 170-171, 10 (2015).
    [72] Yu Zheng, Zisheng Zhang, and Chunhu Li, "A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis" Journal of Photochemistry and Photobiology A: Chemistry 332, 32 (2017).

    無法下載圖示 校內:2019-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE