簡易檢索 / 詳目顯示

研究生: 姚雯琇
Yao, Wen-Xiu
論文名稱: 原料藥製造之結合產能分配與排程問題之研究
A Study on the Mixed Capacity Allocation and Scheduling Problems from Active Pharmaceutical Ingredients Manufacturing Process
指導教授: 楊大和
Yang, Taho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 116
中文關鍵詞: 原料藥產能分配排程模擬最佳化
外文關鍵詞: Active Pharmaceutical Ingredients, Capacity Attribution, Scheduling, Simulation-Optimization
相關次數: 點閱:139下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的原料藥產業已備受重視與期待,在全球原料藥製造產業競爭激烈的環境下,台灣原料藥已在市場中獲得顧客肯定,有鑑於此,各家原料藥製造商為了提升競爭力,皆不斷在原料藥品質、生產總成本與達成顧客交期上不留餘力,增加生產效率並做好有效的管理。
    本研究所觀察之案例公司為了提供顧客多樣性的產品,工廠特性為可隨著不同的專案所設計之製程來使用,部分性質相同的工廠可生產相同的產品,對於生產較有彈性。由於原料藥生產屬於推式生產,必須事先進行生產的規劃與安排,又目前已有一套規劃與安排的方式,除了生管部門負責人進行規劃外,再由各部門主管會透過產銷協調會議,集結各方意見來產生定性的決策結果,然而,此種方式對於量化的判斷相對較少,所產生的規劃結果可能為局部最佳的狀態,較無法有全面性的考量與選擇。此外,工廠的生產成本以及原料藥一公斤的價格都非常高,在這樣的機制下可能造成成本上極大的損失,連帶影響公司整體利潤,因此,本研究所探討的議題即為利用系統觀的方式提供管理者選擇一個較適合的決策與提供參考依據。
    在本研究中利用數學規劃的方式計算產能分配並配合產品與顧客的權重值來調整生產順序,並在工廠限制、產品限制與製程限制的條件下以此機制來符合工廠運作成本、存貨與未交訂單成本總和最小。經過結果與比較分析,本研究所提出之模型在整備換模時間無變異、變異小與變異大的情境下,總成本皆有7~11%左右的改善,雖然百分比不高,但所減少的成本可達千萬元之多。另外,由於單位存貨成本與遲交訂單成本為自行假設之值,利用增加與減少百分比的方式設計不同的情境來觀看兩者不同成本設定下,對總成本以及其他指標的變化,結果顯示,不論在何種情境,本研究模型之總成本皆小於現況模擬的總成本,約有10~16%的改善績效,以此證明本研究模型在不同的成本參數調整下,仍能有較好的績效結果來提供管理者進行決策判斷時的依據。
    實驗結果分析中也可觀察出,案例公司若要將可在大於1個工廠執行生產的產品之作業群組的產能分散在不同工廠,就必須重新檢視整備換模作業,若將部份產能分散於不同工廠生產,整備換模作業的變異程度大小會影響總成本。然而,案例公司實際的整備換模時間若發生變異可延長時間至7天之久,此結果可由變異大的情境中得出,變異較大的整備換模時間造成各項指標值變化較大,因此,案例公司除了生產上的改善活動外,減少換模整備作業的時間也為一項重要的挑戰。

    The active pharmaceutical ingredients industry has been gradually emphasized and looking forward to in Taiwan these years. Because of the recognition from customers in the keen competition global markets, every active pharmaceutical ingredient manufacturer want to increase their competition. The company in this study use not only the same way but the past experiment and the opinions from managers amongst related departments. In this condition, the planners can’t arrange all operations and make decisions from the system perspective. In this condition, the planners can’t arrange all operations and make decisions from the system perspective. So this study use mathematical programming to solve the problem of capacity attribution and product weighting factor, customer weight weighting factor, factories constraints, product constraints, and process constraints to adjust the sequence of production. All the function need to fit the real system and minimize the production cost, inventory cost and backorder cost. After the experiment, the result of the model in this study reveals that the total cost decreases by 7~11 percent. Though there is slight difference between two model’s results, the total cost can be down to NTD ten million. The result of the model in this study reveals that it is better than the original way. The total cost can decrease by 10 to 16percent. It can proof that the model in this study can provide better result even with different cost parameter.

    摘要 i Extended Abstract iii 表目錄 ix 圖目錄 xi 1. 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 6 1.3 研究流程 7 1.4 研究架構 8 2. 文獻探討 10 2.1 原料藥產業生產排程 10 2.2 製造資源規劃 11 2.3 生產排程 17 2.4 模擬最佳化 18 3. 案例說明與研究方法 24 3.1 案例說明與研究方法流程 24 3.2 原料藥產品需求特性 25 3.3 原料藥製造相關特性介紹 31 3.4 原料藥製造流程 45 3.5 案例公司簡介 51 3.6 問題描述 54 3.7 研究方法架構 55 3.8 受產品與製程限制之產能分配 58 3.9 排程與排序決策判斷 63 3.10 離散事件模擬 68 4. 實驗分析 73 4.1 模擬模式建構 73 4.2 混合產能分配與排程之模擬模式 84 4.3 模擬最佳化求解 91 4.4 實驗結果與分析 92 5. 結論與建議 106 5.1 結論 106 5.2 未來研究與建議 107 參考文獻 108 附錄A 111 附錄B 113

    林則孟, 民 95,生產計畫與管理,華泰文化事業股份有限公司,台北市.
    汪嘉玲,2011,我國生技製藥產業創新演化的回顧與前瞻,科學發展.457期,2011年1月,146-150。
    台灣神隆,民102,產品與服務,Avaliable:http://www.scinopharm.com.tw/index.asp/ (2013.12.12取得).
    行政院國家發展委員會,民99,產業發展行動計畫,Available :
    http://www.ey.gov.tw/Upload/RelFile/27/73750/010414534271.pdf (2014.09.05取得).
    MoneyDJ理財網,民102,MoneyDJ理財網-財經知識庫-原料藥,Avaliable:http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?Title=%E5%8E%9F%E6%96%99%E8%97%A5 /(2013.12.12取得)
    經濟部工業局,民102,生技產業白皮書,Avaliable:http://crm.biopharm.org.tw/wb/ (2013.12.12取得).
    Banks, J., Nelson, B.L., and Carson, J.S., 2001. Discrete-Event System Simulation, Peason Prentice Hall, New Jersey.
    Daniel, V., Guide Jr, R., Spencer, S., 1997, Rough-cut capacity planning for remanufacturing firms, Production Planning & Control, 8 (3), 237-244
    Ebadian, M., Rabbani, M., Torabi, S.A., and Jolai, F., 2009. Hierarchical production planning and scheduling in make-to-order environments: reaching short and reliable delivery dates. International Journal of Production Research, 47 (20), 5761-5789.
    Glover, F., 1990. Tabu search: A tutorial. Interfaces, 20 (4), 74-94.
    Glover, F., Kelly, J.P., and Laguna, M., Year. New advances and applications of combining simulation and optimizationed. Proceedings of the 28th conference on Winter simulation, New Orleans, LA, 144-152.
    Glover, F. and Laguna, M., 2013. Tabu Search, Springer, New York.
    Glover, F., Laguna, M., and Martí, R., 2000. Fundamentals of scatter search and path relinking. Control and Cybernetics, 39 (3), 653-684.
    Holland, J.H., 1975. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press, Oxford, England.
    Hopp, W.J. and Spearman, M.L., 2008. Factory Physics, McGraw-Hill, New York.
    Hsieh, C.H., Yang, T., Su, C.T., and Lin, C.H., 2012. The development of a hierarchical rough–cut capacity planning model and demand management system for fishing–net manufacturing. European Journal of Industrial Engineering, 6 (4), 422-440.
    Kelton, W. and Sadowski, R., 2009. Simulation with Arena. 5th edition, McGraw-Hill, Boston.
    Keskin, B.B., Melouk, S.H., and Meyer, I.L., 2010. A simulation-optimization approach for integrated sourcing and inventory decisions. Computers & Operations Research, 37 (9), 1648-1661.
    Kopanos, G.M., Puigjaner, L., and Georgiadis, M.C., 2012. Simultaneous production and logistics operations planning in semicontinuous food industries. Omega, 40 (5), 634-650.
    Lee, C.-K., Shen, Y.-A., Yang, T., and Tang, A.-L., 2011. An effective two-phase approach in solving a practical multi-site order scheduling problem. Journal of the Chinese Institute of Industrial Engineers, 28 (7), 543-552.
    Levis, A.A. and Papageorgiou, L.G., 2004. A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry. Computers & Chemical Engineering, 28 (5), 707-725.
    Mallik, S. and Harker, P.T., 2004. Coordinating supply chains with competition: Capacity allocation in semiconductor manufacturing. European Journal of Operational Research, 159 (2), 330-347.
    McKay, K.N. and Wiers, V., 2003. Integrated decision support for planning, scheduling, and dispatching tasks in a focused factory. Computers in Industry, 50 (1), 5-14.
    Mirrazavi, S.K. and Beringer, H., 2007. A web-based workforce management system for Sainsburys Supermarkets Ltd. Annals of Operations Research, 155 (1), 437-457.
    Omar, M.K. and Teo, S., 2007. Hierarchical production planning and scheduling in a multi-product, batch process environment. International Journal of Production Research, 45 (5), 1029-1047.
    Pacciarelli, D. and D'Ariano, A., 2012. Increasing the reliability of production schedules in a pharmaceutical packaging department. Journal of Medical Systems, 36 (6), 3407-21.
    Pacciarelli, D., Meloni, C., and Pranzo, M., 2011. Models and methods for production scheduling in the pharmaceutical industry. Planning Production and Inventories in the Extended Enterprise. New York: Springer, 429-459.
    Papageorgiou, L.G., Rotstein, G.E., and Shah, N., 2001. Strategic supply chain optimization for the pharmaceutical industries. Industrial & Engineering Chemistry Research, 40 (1), 275-286.
    Petrides, D., Koulouris, A., Siletti, C., Jiménez, J.O., and Lagonikos, P.T., 2010. The Role of Simulation and Scheduling Tools in the Development and Manufacturing of Active Pharmaceutical Ingredients, John Wiley & Sons Inc., USA.
    Sarin, S.C., Sherali, H.D., and Liao, L., 2014. Primary Pharmaceutical Manufacturing Scheduling Problem. IIE Transactions, 46 (12), 1298-1314.
    Şenyiğit, E., 2013. Supplier selection and purchase problem for multi-echelon defective supply chain system with stochastic demand. Neural Computing and Applications, 22 (2), 403-415.
    Shah, N., 2004. Pharmaceutical supply chains: key issues and strategies for optimisation. Computers & Chemical Engineering, 28 (6), 929-941.
    Susarla, N. and Karimi, I.A., 2011. Integrated campaign planning and resource allocation in batch plants. Computers & Chemical Engineering, 35 (12), 2990-3001.
    Swisher, J.R., Hyden, P.D., Jacobson, S.H., and Schruben, L.W., Year. A survey of simulation optimization techniques and proceduresed. Proceedings of 2000 Wniter Simulation Conference, Orlando, FL, 119-128.
    Vollmann, T.E., Berry, W.L., Whybark, D.C., and Jacobs, F.R., 2005. Manufacturing Planning and Control for Supply Chain Management, McGraw-Hill/Irwin New York.
    Wang, I.-L., Yang, T., and Chang, Y.-B., 2012. Scheduling two-stage hybrid flow shops with parallel batch, release time, and machine eligibility constraints. Journal of Intelligent Manufacturing, 23 (6), 2271-2280.
    Wang, K.-J. and Hou, T., 2003. Modelling and resolving the joint problem of capacity expansion and allocation with multiple resources and a limited budget in the semiconductor testing industry. International Journal of Production Research, 41 (14), 3217-3235.
    Wortman, J., Euwe, M., Taal, M., and Wiers, V., 1996. A review of capacity planning techniques within standard software packages. Production Planning & Control, 7 (2), 117-128.
    Yang, T., 2009. An evolutionary simulation–optimization approach in solving parallel-machine scheduling problems–A case study. Computers & Industrial Engineering, 56 (3), 1126-1136.
    Yang, T., Hsieh, C.-H., and Cheng, B.-Y., 2011. Lean-pull strategy in a re-entrant manufacturing environment: a pilot study for TFT-LCD array manufacturing. International Journal of Production Research, 49 (6), 1511-1529.
    Yang, T. and Lu, J.-C., 2011. The use of a multiple attribute decision-making method and value stream mapping in solving the pacemaker location problem. International Journal of Production Research, 49 (10), 2793-2817.
    Yang, T. and Shen, Y.-A., 2012. Heuristic algorithms for a practical-size dynamic parallel-machine scheduling problem: integrated-circuit wire bonding. Production Planning & Control, 23 (1), 67-78.
    Yao, L., 2008. Modeling, Analysis and Solution Approaches for Some Optimization Problems: High Multiplicity Asymmetric Traveling Salesman, Primary Pharmaceutical Manufacturing Scheduling, and Lot Streaming in an Assembly System. Faculty of Virginia Polytechnic Institute, Unpublished Thesis, Avaliable:http://scholar.lib.vt.edu/theses/available/etd-06062008-093800/(2014.06.02取得).

    下載圖示 校內:2017-01-06公開
    校外:2017-01-13公開
    QR CODE