簡易檢索 / 詳目顯示

研究生: 陳宏維
Chen, Hong-wei
論文名稱: 應用小波分析與類神經對乳癌前期微鈣化之影像處理
Image Processing of Micro-Calcifications for Early-stage Breast Cancer via Wavelet Analysis and Neural Network
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 146
中文關鍵詞: 類神經多數決法則Renyi's資訊理論小波轉換微鈣化
外文關鍵詞: Neural Network, Majority Vote Rule, Renyi's Information, Wavelet Transform, Microcalcification
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出全新的乳房攝影微鈣化區域之電腦輔助診斷系統,此方法可提高系統的靈敏度(真陽性率)與醫師們診斷時的能見度。本研究共有兩階段為重建與辨識微鈣化區域。
    在第一階段重建疑似微鈣化區域中,利用Renyi’s資訊理論在小波轉換的不同分析層中將正常背景組織中的疑似微鈣化像素分割出來。然後藉由形態學運算與多數決法則以重建疑似微鈣化區域。此時,系統的靈敏度與每張影像的偽陽性值分別為97.19 %與22.88個。
    在第二階段辨識微鈣化區域中,透過偏心率、緊密度、形狀慣量與灰階統計值等描述元,作為貝氏分類器與倒傳遞類神經網路分類疑似微鈣化區域的依據,從疑似微鈣化區域中擷取出49個描述元以辨識出微鈣化區域,並透過主成份分析找出有識別性的描述元,作為分類器的輸入訊號。
    最後利用26張待研討的區域影像作為本研究方法的實證,此26張ROI(Region of Interest)皆為成大醫院之實際病歷,尤其當主成份數目選為9時,倒傳遞類神經網路的靈敏度與每張影像的偽陽性值分別為97.12 %與0.08個,其靈敏度將高出貝氏分類器約19 %左右,其差異最為明顯。

    An innovative approach for computer-aided diagnosis algorithm upon microcalcification in digital mammograms is presented. It is efficient to increase the sensitivity (true positive detection rate) of the diagnosis system and enhance the visibility for medical doctors. This algorithm mainly consists of two stages of image processing including image reconstruction and extraction of microcalcification regions.
    In order to reconstruct the microcalcification regions under suspicion, the potential microcalcification pixels are separated from the normal background tissue by employing Renyi’s information segmentation at different decomposition levels of the wavelet transform. Then the microcalcification regions under suspicion are reconstructed by the morphological operation and the majority vote rule. At this stage, the sensitivity is 97.19 % for segmentation with 22.88 false positive per image.
    In order to extract the microcalcification regions under suspicion, Bayes classifier and Back-Propagation neural network are individually applied to classify the microcalcification regions by using linear combination of descriptors consisting of eccentricity, compactness, Shape Inertia and gray-level statistics. Microcalcification regions are detected by using a set of 49 descriptors. The discriminatory efficacy of these descriptors is verified by the approach of principal component analysis.
    The presented algorithm is applied to a database of 26 regions of interest (ROI). In particular, the 97.12 % sensitivity is achieved at the cost of 0.08 false positive per image as the 9 principal components are used by the Back-Propagation neural network. To sum up, the sensitivity of the Back-Propagation neural network is approximately 20 % better than that obtained by Bayes classifier.

    目錄 中文摘要………………………………………………………I 英文摘要………………………………………………………III 致謝……………………………………………………………IV 目錄……………………………………………………………V 表目錄…………………………………………………………XI 圖目錄…………………………………………………………XIII 第一章 緒論 …………………………………………………1 1.1 研究背景…………………………………………………1 1.2 研究動機…………………………………………………2 1.3 文獻回顧…………………………………………………4 1.3.1影像增強法文獻回顧 ……………………………5 1.3.2微鈣化組織之特徵值文獻回顧 …………………6 1.3.3分類器文獻回顧 …………………………………6 1.4 論文貢獻…………………………………………………7 1.5 論文架構…………………………………………………8 第二章 微鈣化與醫學影像處理 ……………………………9 2.1 前處理……………………………………………………9 2.1.1 直方圖增強法……………………………………9 2.1.2 梯度運算子………………………………………12 2.1.3 背景雜訊去除法…………………………………13 2.2 描述元……………………………………………………17 2.3 分類器……………………………………………………19 2.4 結論………………………………………………………21 第三章 微鈣化組織之分割處理 ……………………………22 3.1 小波平面…………………………………………………24 3.2 小波係數之適應性臨界值演算法………………………26 3.3 疑似微鈣化組織區域之重建……………………………29 3.4 分割疑似微鈣化組織區域之探討………………………30 3.5 分割疑似微鈣化組織區域之驗證………………………35 3.6 本章總結…………………………………………………43 第四章 微鈣化組織區域之辨識 ……………………………44 4.1 區域特徵之表示與描述…………………………………47 4.2 主成份分析………………………………………………60 4.3 分類器……………………………………………………65 4.3.1 直方圖增強法……………………………………66 4.3.2 倒傳遞類神經分類器……………………………72 4.4 辨識微鈣化組織群區域之驗證與探討…………………77 4.5 本章總結…………………………………………………84 第五章 實證與探討 …………………………………………86 5.1 結論………………………………………………………86 5.2 未來展望…………………………………………………87 参考文獻………………………………………………………89 附錄A 小波分析………………………………………………92 A.1 小波轉換…………………………………………………92 A.1.1 基底………………………………………………92 A.1.2 轉換空間…………………………………………95 A.1.3 平移參數…………………………………………97 A.1.4 尺度參數…………………………………………98 A.2 離散小波轉換……………………………………………99 A.2.1 多重解析度分析…………………………………99 A.2.2 尺度函數…………………………………………101 A.2.3 一維離散小波轉換………………………………103 A.2.4 二維離散小波轉換………………………………105 附錄B Renyi's資訊理論……………………………………108 附錄C 分類器…………………………………………………110 C.1 貝氏分類器………………………………………………110 C.2 倒傳遞類神經網路分類器………………………………112 附錄D twc指令………………………………………………115 附錄E wpc指令………………………………………………117 附錄F wcc指令………………………………………………118 附錄G shape_feature指令…………………………………120 附錄H shape_momen指令……………………………………125 附錄I co_matrix指令………………………………………127 附錄J co_feature指令 ……………………………………130 附錄K PCA指令………………………………………………135 附錄L Sample Basic程式碼 ………………………………137 附錄M Data_Basic指令 ……………………………………138 附錄N Gaussian Distribution Bayes Classifier程式碼 ………………………………………………………139 附錄O GBC指令………………………………………………142 附錄P Training Back-Propagation Neural Network Classifier程式碼 …………………………………143 附錄Q Back-Propagation Neural Network Classifier 程式碼 ………………………………………………144

    [1]http://www.doh.gov.tw/statistic/index.htm
    [2]許慧貞、袁維新, ”乳房影像診斷一百例”,合記圖書出版
    社,2006
    [3]繆紹剛, ”數位影像處理 活用--Matlab,” 全華科技圖書
    股份有限公司, 2002
    [4]羅華強, ”類神經網路 Matlab的應用,” 高立圖書股份有
    限公司, 2005
    [5]C. K. Chui, “An Introduction to Wavelets,” Academic
    Press, 1992.
    [6]T. C. Wang and N. B. Karayianmis, “Detection of
    Microcalcification in Digital Mammograms Using
    Wavelets,” IEEE Trans. Med. Image., Vol. 17, No. 4,
    pp. 498-509 , Aug. 1998.
    [7]E. Sakka, A. Prentza and D. Koutsouris,
    “Classification Algorithms for Microcalcifications in
    Mammograms (Review),” Oncology Reports, Vol. 15,
    pp. 1049-2056, 2006.
    [8]K. Thangavel, M. Karnan, R. Sivakumar and A. Kaja
    Mohideen, “Automatic Detection of Microcalcification
    in Mammograms - A Review,” ICGST, 2006.
    [9]H. D. Cheng, and H. Xu, “A Novel Fuzzy Logic Approach
    to Mammogram Contrast Enhancement,” Information
    Sciences Application, Vol 148, No. 1-4, pp. 167-184,
    Dec. 2002.
    [10]A. P. Dhawan, G. Buellton, R. Gordon, “Enhancement of
    mammographic features by optimal adaptive neighborhood
    image processing”, IEEE Trans. Med. Imag. , Vol 5,
    No. 1, pp. 8-15, March, 1986.
    [11]W. M. Morrow, R. B. Para jape, R. M. Rangayyan,
    J. E. L. Desautels, “Region-based contrast
    enhancement of mammograms”, IEEE Trans. Med. Imag.,
    Vol. 11, No. 3, pp. 392–406, 1992.
    [12]L. Shen, R. M. Rangayyan and J. E. L. Desautels,
    “Application of Shape Analysis to Mammographic
    Calcifications,” IEEE Trans. Med. Imag., Vol. 13,
    No. 2, pp. 263-274, Jun. 1994.
    [13]J. K. Kim, J. M. Park, K. S. Song, H. W. Park,
    “Adaptive mammographic image enhancement using first
    derivative and local statistics”, IEEE Trans. Med.
    Imag., Vol 16, No. 5, pp. 495-502, 1997.
    [14]B. Zheng, W. Qian, L. P. Clarke, “Digital
    mammography: mixed feature neural network with
    spectral entropy decision for detection of
    microcalcifications”, IEEE Trans. Med. Imag., Vol.15,
    No.5, pp. 589-597, Oct. 1996.
    [15]S. Yu and L. Guan, “A CAD System for the Automatic
    Detection of Clustered Mictocalcifications in
    Digitized Mammogram Films,” IEEE Trans. Med. Imag.,
    Vol. 19, No. 2, pp. 115-126 , Feb. 2000.
    [16]A. Hojjatoleslami, L. Sardo, and J. Kittler, ”An RBF
    Based Classifier for the Detection of
    Microcalcification in Mammograms with Outlier
    Rejection Capability,” IEEE Trans. Med. Imag.,
    Vol. 21, No. 12,pp. 1379-1384, Jun. 1997.
    [17]I. E1-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos,
    R. M. Nishikawa, “A Support Vector Machine Approach
    for Detection of Microcalcifications”, IEEE Trans.
    Med. Imag., Vol. 3, No. 12, Dec. 2002.
    [18]H. P. Chan, C. J. Vyborny, H. McaMahon, C. E. Metz,
    K. Doi, and E. A. Sickles, “Digital mammography: ROC
    studies of the effects of pixel size and unship-mask
    filtering on the detection of subtle
    microcalcifications”, Invest. Radiol., Vol.22, No.7,
    pp. 581–589, 1987.
    [19]M. Witrh, M. Fraschini, and J. Lyon, “Contrast
    Enhancement of Microcalcifications in Mammograms Using
    Morphological Enhancement and Non-flat Structuring
    Elements,” IEEE Symposium on CBNS’04., pp. 134-139,
    Jun. 2004.
    [20]R. N. Strickland and H. I. Hahn, “Wavelet Transform
    for Detection Microcalcifications in Mammogramms,”
    IEEE Trans. Med. Imag., Vol. 15, No. 2, pp. 218-229,
    Apr. 1996.
    [21]T. C. Wang and N. B. Karayianmis, “Detection of
    Microcalcification in Digital Mammograms Using
    Wavelets,” IEEE Trans. Med. Image., Vol. 17, No. 4,
    Aug. 1998.
    [22]M. J. Lado, P. G. Tahoces, A. J. Méndez, and
    J. J. Vidal, “A Wavelet-Based Algorithm for Detecting
    Clustered Microcalcifications in Digital Mammograms,”
    Phys. Med. Biol., Vol. 26, No. 7, pp. 1294-1305,
    July, 1999.
    [23]S. Z. Hamid, R. R. Farshid, and P. N. D Siamak,
    “Comparison of multiwavelet, wavelet, Haralick, and
    shape features for microcalcification classification
    in mammograms,” ELSEVIER Patten Recognition Society.,
    Vol. 37, No. 10, pp. 1973-1986, Apr. 2004.
    [24]A. Hojjatoleslami, L. Sardo, and J. Kittler, ”An RBF
    based classifier for the detection of
    microcalcification in mammograms with outlier
    rejection capability,” IEEE Trans. Med. Image.,
    Vol. 3, pp. 1379-1384, Jun. 1997.
    [25]G. Boccignone, A. Chinanese and A. Picaroello,
    “Computer Aided Detection of Microcalcifications in
    Digital Mammograms,” Elsevier Science Med. Biol. Eng.
    Computer, pp. 267-286, Apr. 2000.
    [26]A. P. Dhawan, Y. Chitre, C. Kaiser-Bonasso and
    M. Moskowitz, “Analysis of Mammographic
    Microcalcifications Using Gray-Level Image Structure
    Features.” IEEE Trans. Med. Imaging., Vol. 15, No. 3,
    pp. 246-259, Jun. 1996.

    下載圖示 校內:2011-06-30公開
    校外:2012-06-30公開
    QR CODE